
Faculty of Computer Science
Real-Time Group

Diploma Thesis

An Analysis of Linux Boot Times

Author: Florian Strunk

Author e-mail:

Date of Issue: September 13, 2007

Date of Submission: March 10, 2008

Supervisor: Dr.-Ing. Robert Baumgartl

Florian Strunk

An Analysis of Linux Boot Times

Diploma Thesis, Chemnitz University of Technology, 2008

Abstract

For consumer devices it is necessary that they are in a ready to use state approximately in

a few of seconds (10 -15 sec.) after power on. So far one main objection against the usage

of Linux for consumer devices is its time-consuming boot process.

In this thesis it is examined, what the history of the boot times of Linux in the last years is.

For this purpose some of the popularly distributions in the versions of the last two years

are evaluated. Besides the influence of several mass storages (local and network) and

different number of cores of the CPU is shown. In this thesis a possibility is presented,

which accelerates the starting up of Linux up to 60 percent compared to the new init-

system upstart. For decreasing the time to get in the ready to use state several

optimizations are recommended.

Because of the reason that the operating system is not only responsible for the total boot

up time, the execution of several firmwares are examined too.

Thanks

I would like to thank Dr.-Ing. Robert Baumgartl for the supervision of this diploma thesis

and Nigel Cunningham for the help to let me understand his project TuxOnIce.

Overview of contents

1 Introduction...17

2 State of the art...19

3 Measuring methods..27

4 Myth of continuously rising boot times..35

5 Research of the latest versions...41

6 Influence of several mass storages to the boot behavior.....................47

7 Tweaking Ubuntu 7.10 to reduce boot time..61

8 Alternative to the boot process...68

9 Evaluation of embedded systems (IA32)..78

10 Comparison between several firmwares..82

11 Conclusion...88

12 Outlook...90

A Test systems...91

B Technical data of mass storages..98

C Adapter (SATA / IDE / CF)...103

D Modification of the Mac Mini...105

E Charts of Bootchart..107

F Additional tables...120

G Source code..123

Glossary..127

References..129

Contents

1 Introduction...17

2 State of the art...19
2.1 Overview of the boot process..19

2.2 Description of the boot process...19

2.2.1 Power on, CPU reset..19

2.2.2 Execution of firmware ..19

2.2.2.1 PC-BIOS..19

2.2.2.2 LinuxBios...21

2.2.2.3 (U)EFI..22

2.2.3 Load boot loader...23

2.2.4 Load operation system...23

2.2.4.1 Kernel..23

2.2.4.2 Init..23

2.3 Previous publications on “Boot Process and Linux”..25

3 Measuring methods..27
3.1 Introduction of the measuring methods...27

3.1.1 Stop watch..27

3.1.1.1 Short Description of using a stop watch...27

3.1.1.2 Measuring points...27

3.1.2 Bootchart..27

3.1.2.1 Short Description of Bootchart..27

3.1.2.2 Measuring points...28

3.1.2.3 How to install Bootchart..28

3.1.2.4 Sample of a Bootchart chart...29

3.1.3 Fbtt (Florian's Boot Time Tool)...29

3.1.3.1 Short description of Fbtt..29

3.1.3.2 Measuring points...30

3.1.3.3 How to install Fbtt..30

3.1.3.4 Sample of a Fbtt output file...30

3.2 Comparison of measuring methods...31

3.2.1 Description..31

3.2.2 Results..32

3.2.3 Discussion..33

4 Myth of continuously rising boot times..35
4.1 Introduction of the different distributions..35

- 6 -

4.1.1 Debian..35

4.1.2 Ubuntu..36

4.1.3 OpenSUSE / SuSE Linux...36

4.2 Configuration of the distribution...36

4.3 Used measuring methods..37

4.4 Results...38

4.5 Discussion..39

5 Research of the latest versions...41
5.1 Evaluation of boot times with using traditional mass storage....................................41

5.1.1 Configuration..41

5.1.2 Measuring methods..41

5.1.3 Results..42

5.1.4 Discussion..42

5.2 Analysis of the boot process with Bootchart ...43

5.2.1 Configuration..43

5.2.2 Used measuring methods..43

5.2.3 Results..43

5.2.3.1 Bootchart of Debian 3.1..43

5.2.3.2 Bootchart of Debian 4...44

5.2.3.3 Bootchart of Ubuntu 7.10..44

5.2.3.4 Bootchart of OpenSuse 10.3...45

5.2.4 Discussion..45

6 Influence of several mass storages to the boot behavior.....................47
6.1 Local mass storage..47

6.1.1 Configuration for the hard disks and flashes..47

6.1.2 Measuring methods..47

6.1.3 Results..48

6.1.4 Discussion..49

6.2 Network mass storage...50

6.2.1 Configuration for the net boot...50

6.2.1.1 Introduction to configure the client..50

6.2.1.2 Introduction to configure the server..51

6.2.2 Measurement methods...56

6.2.3 Results..56

6.2.4 Discussion..57

6.3 Spread of the measurement values...57

6.3.1 Description..57

6.3.2 Results..58

6.3.3 Discussion..59

- 7 -

7 Tweaking Ubuntu 7.10 to reduce boot time..61
7.1 Description...61

7.2 Configuration..61

7.2.1 Point of start...61

7.2.2 Removing services...61

7.2.2.1 Services applet..61

7.2.2.2 Boot-up-Manager (B.U.M.)..62

7.2.2.3 Sysv-rc-conf..63

7.2.2.4 Reprofile readahead-list..63

7.2.3 Acceleration the file system..63

7.2.4 Parallel execution...64

7.3 Results...65

7.4 Discussion..66

8 Alternative to the boot process...68
8.1 Boot process abstract..68

8.2 Suspend-to-Disk versus Power on and restore state..69

8.3 Suspend-to-Disk and Linux...69

8.3.1 TuxOnIce..70

8.3.1.1 Installation of TuxOnIce..70

8.3.1.2 Configuration and Measurement methods..74

8.3.1.3 Results..75

8.3.1.4 Discussion...76

9 Evaluation of embedded systems (IA32)..78
9.1 Traditional boot process...78

9.1.1 Configuration..78

9.1.2 Measurement methods...78

9.1.3 Results..79

9.1.4 Discussion..79

9.2 Boot up by loading image..80

9.2.1 Configuration..80

9.2.2 Measurement methods...80

9.2.3 Results..81

9.2.4 Discussion..81

10 Comparison between several firmwares..82
10.1 PC-BIOS..82

10.1.1 Configuration and measurement method...82

10.1.2 Results..83

10.2 LinuxBios...84

10.2.1 Configuration and measurement method...84

- 8 -

10.2.2 Results..84

10.3 EFI...85

10.3.1 Configuration and measurement method...85

10.3.2 Results..86

10.4 Discussion..86

11 Conclusion...88

12 Outlook...90

A Test systems...91
A.1 System ATH64_1.8..91

A.2 System ATH64X2_2.0...92

A.3 System EPIA-ML...93

A.4 System CORE2DUO_2.16..94

A.5 System P4_3.2..95

A.6 System GEODE-LX...96

A.7 System MAC-MINI...97

B Technical data of mass storages..98
B.1 SAM2.5SATA100GB..98

B.2 SEA3.5SATA500GB..99

B.3 TRACF4GB...100

B.4 TAKCF4GB..101

B.5 MAC-MINI HDD...102

C Adapter (SATA / IDE / CF)...103
C.1 SATA-CF-Adapter..103

C.1.1 Troubleshooting with the SATA-CF-Adapter..103

C.2 IDE-SATA-Adapter..104

C.3 SATA-SATA-Adapter...104

D Modification of the Mac Mini...105

E Charts of Bootchart..107

F Additional tables...120
F.1 Features list of Suspend-To-Disk and Linux..120

F.2 Description of the tables TuxOnIce boot..122

G Source code..123
G.1 Fbtt..123

G.1.1 fbtt.cpp...123

G.1.2 makefile...126

- 9 -

Glossary..127

References..129

- 10 -

List of figures
Figure 2.1: Platform and EFI OS Booting Sequence, source [UEFI1.1]..............................23

Figure 2.2: Simplified illustration of a Linux boot sequence, confer source [WIKId]...........24

Figure 3.1: Sample of a chart of Bootchart..29

Figure 4.1: Boot time of different distributions...39

Figure 5.1: boot time of the distributions Debian 4, Ubuntu 7.10 beta, openSUSE............42

Figure 5.2: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB

(Debian 3.1)..43

Figure 5.3: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB (Debian 4)

..44

Figure 5.4: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB

(Ubuntu 7.10)...44

Figure 5.5: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB

(openSUSE 10.3)...45

Figure 6.1: Boot times of several local mass storages on ATH64X2_2.0............................48

Figure 6.2: Abstract of the boot chart of TRACF4GB without use of readahead-list...........49

Figure 6.3: Abstract of the boot chart of TRACF4GB after reprofiling readahead-list.........49

Figure 7.1: Times of the steps of tweaking Ubuntu 7.10 beta...65

Figure 7.2: Abstract of the boot chart of the tweaked Ubuntu 7.10 beta with TRACF4GB. 66

Figure 8.1: Illustration of an abstract boot process..68

Figure 9.1: Abstract of the boot chart of Ubuntu 7.10 beta on System EPIA-ML with

SEA3.5SATA500GB...79

Figure 9.2: Abstract of the boot chart of Ubuntu 7.10 beta on System EPIA-ML with

TRACF4GB..79

Figure B.1: Output of h2benchw for SAM2.5SATA100GB...98

Figure B.2: Output of h2benchw for SEA3.5SATA500GB...99

Figure B.3: Output of h2benchw for TRACF4GB...100

Figure B.4: Output of h2benchw for TAKCF4GB...101

Figure C.1: SATA-CF-Adapter (DeLOCK 91623)..103

Figure C.2: IDE-SATA-Adapter (Fibrionic Model No: CK-0019C Ro)................................104

Figure C.3: SATA-SATA-Adapter...104

- 11 -

Figure D.1: Opened Mac Mini with the removed DVD drive and the external power supply

for the hard disk..105

Figure D.2: Opened Mac Mini with the cable-connected DVD drive and the external power

supply for the hard disk..106

Figure E.1: Boot chart of boot process of Debian 3.1 on System ATH64X2_2.0 with

SEA3.5SATA500GB...107

Figure E.2: Boot chart of boot process of Debian 3.1 on System ATH64_1.8 with

SEA3.5SATA500GB...108

Figure E.3: Boot chart of boot process of Debian 4.0 on System ATH64X2_2.0 with

SEA3.5SATA500GB...109

Figure E.4: Boot chart of boot process of Ubuntu 7.10 beta on System ATH64X2_2.0 with

SEA3.5SATA500GB...110

Figure E.5: Boot chart of boot process of openSUSE 10.3 RC1 on System ATH64X2_2.0

with SEA3.5SATA500GB (Part 1)...111

Figure E.6: Boot chart of boot process of openSUSE 10.3 RC1 on System ATH64X2_2.0

with SEA3.5SATA500GB (Part 2)...112

Figure E.7: Boot chart of boot process of Ubuntu 7.10 beta with SEA3.5SATA500GB

without use of readahead-list...113

Figure E.8: Boot chart of boot process of Ubuntu 7.10 beta with SEA3.5SATA500GB with

use of readahead-list..114

Figure E.9: Boot chart of boot process of Ubuntu 7.10 beta with TRACF4GB without use of

readahead-list...115

Figure E.10: Boot chart of boot process of Ubuntu 7.10 beta with TRACF4GB after

reprofiling readahead-list..116

Figure E.11: Boot chart of boot process of the tweaked Ubuntu 7.10 beta with TRACF4GB

..117

Figure E.12: Boot chart of boot process of Ubuntu 7.10 beta on System EPIA-ML with

SEA3.5SATA500GB...118

Figure E.13: Boot chart of boot process of Ubuntu 7.10 beta on System EPIA-ML with

TRACF4GB...119

- 12 -

List of tables
Table 2.1: Post process of an Award PC-BIOS version 4.53, source [SCH07]...................21

Table 2.2: Available payloads for the LinuxBios, confer source [COR]...............................22

Table 2.3: Runlevel for Fedora, Red Hat and SuSE, confer source [KOF07a]...................24

Table 2.4: Runlevel for Debian and Ubuntu, confer source [KOF07a]................................25

Table 3.1: Sample of a Fbtt output file...30

Table 3.2: Single values of test series with SEA3.5SATA500GB..32

Table 3.3: Measured values of central tendency of test series with SEA3.5SATA500GB...32

Table 3.4: Influence of Fbtt (Run 1)...33

Table 3.5: Influence of Fbtt (Run 2)...33

Table 3.6: Influence of Fbtt (Run 3)...33

Table 4.1: Tested distributions for the myth of continuously rising boot times.....................35

Table 4.2: Partition table for the test series: The myth of continuously rising boot times....37

Table 4.3: Boot time of different distributions...38

Table 5.1: Partition table of both hard disks for the research of the latest versions............41

Table 5.2: Boot time of the distributions Debian 4, Ubuntu 7.10 beta, openSUSE.............42

Table 6.1: Table of partitioning of the flash medias..47

Table 6.2: Boot times of several local mass storages on ATH64X2_2.0.............................48

Table 6.3: Results of the influence of readahead-list...48

Table 6.4: Values of NFS boot, Fbtt method..56

Table 6.5: Values of NFS boot, stop watch method...56

Table 6.6: Single values of test series with TRACF4GB..58

Table 6.7: Measures of central tendency of test series with TRACF4GB............................58

Table 6.8: Single values of difference of minimal and maximal for TRACF4GB.................59

Table 6.9: Single values of difference of minimal and maximal for SEA3.5SATA500GB....59

Table 7.1: Settings of services...62

Table 7.2: Settings of services changed with Boot-up-Manager (B.U.M.)...........................63

Table 7.3: Times of the steps of tweaking Ubuntu 7.10 beta...65

Table 7.4: Minimal, maximal and mean times for the steps of tweaking Ubuntu 7.10 beta 65

- 13 -

Table 8.1: Possibilities to get to a Ready-To-Use-State...68

Table 8.2: Partition table of SEA3.5SATA500GB for TuxOnIce...75

Table 8.3: Values of the TuxOnIce boot on ATH64X2_2.0...75

Table 9.1: Boot times of Ubuntu 7.10 beta (EPIA-ML) with several mass storages............79

Table 9.2: Values of the TuxOnIce boot on EPIA-ML..81

Table 10.1: PC-BIOS settings of ATH64X2_2.0...82

Table 10.2: PC-BIOS settings of EPIA-ML...83

Table 10.3: Results with using internal power supply (PC-BIOS ATH64X2_2.0)................83

Table 10.4: Results with using external power supply (PC-BIOS ATH64X2_2.0)...............83

Table 10.5: Results with using internal power supply (PC-BIOS EPIA-ML)........................84

Table 10.6: Results with using external power supply (PC-BIOS EPIA-ML).......................84

Table 10.7: Results with using internal power supply (LinuxBios EPIA-ML).......................84

Table 10.8: Results with using external power supply (LinuxBios EPIA-ML)......................85

Table 10.9: Result of EFI evaluation..86

Table A.1: Technical data of the system ATH64_1.8..92

Table A.2: Technical data of the system ATH64X2_2.0...93

Table A.3: Technical data of the system EPIA-ML...94

Table A.4: Technical data of the system CORE2DUO_2.16..95

Table A.5: Technical data of the system P4_3.2..96

Table A.6: Technical data of the system GOEDE-LX...97

Table A.7: Technical data of the system MAC-MINI...97

Table B.1: Technical data of SAM2.5SATA100GB...98

Table B.2: Technical data of SEA3.5SATA500GB...99

Table B.3: Technical data of TRACF4GB...100

Table B.4: Technical data of TAKCF4GB...101

Table B.5: Technical data of MAC-MINI hard disk...102

Table F.1: Features list of Suspend-To-Disk and Linux, source [TOIb]..............................121

Table F.2: Description of the tables TuxOnIce boot...122

- 14 -

1 Introduction
In the past, at the beginning of the computer era, a single computer occupied a whole floor

or building. Nowadays thousands of nodes are situated within a separate building to form a

huge electronic data processing center. At this time, a computer was used by many

persons at the same time and it was turned on by an engineer in the morning before the

beginning of the work by employees, in case the computer was turned off at all.

Instead of using one device all day long, the trend goes to utilize a couple of gadgets,

which are interconnected to each other. A gadget has at least one primary function, and

dozens of secondary functions, to be competitive. For this a operating system is

necessary, which can manage these complex structures. The development of a proprietary

operating system is very time consuming and expensive. As an alternative the open

source operating system Linux can be used. Everyone has the possibility to fit it to the

needed requirements. Linux runs on embedded systems with limitation of computing

power, up to the TOP500, the fastest 500 computers of the world. From the TOP500 426

of the use Linux as operating system (stand of Nov. 2007) [TOP07].

A survey conducted by Venture Development Corporation (VDC) for the year 2007 says,

that 40 percent of the developer use Linux for the running projects as embedded operating

system 39 percent are based on commercial and 7 percent on in house developments. In

the next project, 87 percent of the embedded system developers want to use Linux, 12

percent a commercial operating system and only 1 percent a in house solution. [LMA07a]

The most people have contact with Linux, but most of these do not know it at all. Which

devices are powered by Linux? For example there are low-cost-router, mobile phones,

personal video recorders (PVR), electronic devices for kids (like ASUS EEE-PC), personal

computers, server, mainframes.

For a device, which is frequently used, but only for a short time span, it is necessary that

the device gets in ready state as soon as possible when it is powered on. When the

resource energy is unlimited and for free, the device can run 24 hours a day, so that it is

ready to use every time. But in most cases the energy is neither unlimited nor free. This

means that the device has to be turned on and booted up first, before it can be used. The

problem is, that a system, which provides a couple of functions, needs more than a couple

of seconds, usually about a minute to finish setup up. But who wants to wait a minute or

more when using the DVD player or PVR and who wants to wait more than a couple of

seconds when looking for emails? The least of us. Many more examples could be found.

To reduce the time of waiting, desirable are 15 seconds and less, it is appropriate to

examine the boot process of Linux. The questions are, how does the boot process

function, what evolution took place in the last years, what is the influence of several types

of mass storages, how can the boot process be optimized, are there other possibilities to

get the system in a ready to use state in a couple of seconds?

- 17 -

It is not the ambition to reduce a system to such a degree that it becomes unusable. A

system which could achieve the shortest booting up time, would grabs the headlines, but is

likely to fail functionality and usability.

Potential optimizations or changes should not have any adverse effects on compatibility,

safety and usability.

- 18 -

2 State of the art

2.1 Overview of the boot process

Let us take a look at a possible boot process of a x86-PC with Linux as operating system.

The boot process can be subdivided into four sections.

1. Power on, CPU reset

2. Execute firmware

3. Run boot loader

4. Start operating system

- Kernel

- Init-System

For most of the parts, there are several possibilities to perform the necessary function.

These are described in chapter 2.2.

2.2 Description of the boot process

2.2.1 Power on, CPU reset

When the computer is powered on, the CPU will be reset and go into a well-definied state.

The register will be set to a default value.

2.2.2 Execution of firmware

After the initialization the x86-CPU jumps to the CPU reset vector address and then

executes the firmware code (PC-BIOS, LinuxBios, EFI etc.).

2.2.2.1 PC-BIOS

A PC-BIOS (Personal Computer - Basic Input Output System) executes the Power On

Self Test (POST). The POST can differ from manufacturer to manufacturer (Ami, Phoenix,

Award) and from version to version, because no standard does exist. An example of the

POST process can be seen in table 2.1.

- 19 -

Keyword Short description

CPU set, verify, reset, error flags of CPU

Initialize Support Chips disconnect Video, Parity DMA and NMI, and initialize the PIT,

PIC and DMA chips

Refresh check capability to refresh PIT chips

Initialize Keyboard initialize the controller of keyboard and keyboard

ROM BIOS Test generate checksum of BIOS data and compare result with

presetting

CMOS Test check CMOS chip

Memory Test check the first 356Ki of memory with routines of the chip set

Cache Initialization activate external cache

Initialize Vector Table initialize interrupt vectors and install interrupt table in lower

memory

CMOS RAM Test generate checksum of CMOS RAM, if failure then load

defaults

Keyboard Initialization initialize keyboard, set NumLock to on

Video Test check and initialize monochrome and CGA graphic interfaces

Video Memory check video memory of monochrome and CGA graphic

interfaces

DMA Test check DMA controller and page register

PIC Tests generate some tests for 8259 PIC chips

EISA Mode Test generate checksum of extended CMOS data, where the

information of the EISA interface is placed

Enable Slots if the test before is positive, the slots 0 – 15 will be enabled

Memory Size write test to all addresses above 256Ki with 64Ki blocks and

init them. If one bit of a block faulty, then this block and all

blocks above won't be seen.

Memory Test write and read test of the found size above 256Ki

EISA Memory initialize all EISA slots and check memory of EISA interfaces

Mouse Initialization searching for the input device mouse and installing interrupt

vector

Cache Initialization initialize cache controller

Shadow RAM Setup enable all shadow ram, which are activated by CMOS setup

Floppy Test check and initialize floppy controller and drive

Hard Drive Test check and initialize hard disk controller and drive

Serial/Parallel initialize all serial and parallel ports, use the I/O port

information of the CMOS setup to find the ports.

- 20 -

Math coprocessor initialize the math coprocessor

Boot Speed set the default core speed

Manufacturing POST

Loop

reboot if loop pin set

Security Check ask user for password, if one was set

Write CMOS write CMOS setup data to ram

Pre boot waiting for previous process

Adapter ROM

Initialization

initialize all ROMs, which are found between C800:0 and

EFFF:F

each ROM checks and initializes all founded devices

Setup Time set the CMOS time to the entry of the data from address 40 h

Boot System give the control of int 19 to boot loader

Boot Errors if the boot loader fails, the BIOS will try to boot from floppy

drive

Table 2.1: Post process of an Award PC-BIOS version 4.53, source [SCH07]

2.2.2.2 LinuxBios

The idea of the LinuxBios is besides providing an open firmware reducing the components

which will be initialized . It only initializes those components, witch are necessary to load a

Linux kernel. However not many main boards actually have enough flash ROM capacity

for a kernel, so that an other payload can be loaded before. Several payloads are listed in

table 2.2.

Tasks executed by the LinuxBios in detail (confer source [MIN04]):

● The first 10 to 15 instructions initializes the CPU, a minimal virtual memory (at

minimum 32-bit addressing mode) and other resources that are needed to turn on

memory, such as the I2C bus. The internal CPU to also set to a sane state. They

also set the internal CPU to a sane state.
● Then the startup code for the memory follows, which needs a sane CPU and a

working I2C bus for requesting the memory parameters.
● After that, some code is executed for loading object code originally written in C from

the Flash into the main memory. As an option compressed object code can be used.
● Then the code, which needs a working main memory, can be run. This scans the

hardware resources and initializes them.
● At last, one or more payloads can be loaded and executed, which perform custom

and final configuration work and boot an operating system.

- 21 -

Payload Comment URL

Linux Boot into a Linux kernel directly http://www.kernel.org/

FILO Simple bootloader with filesystem

support

http://www.linuxbios.org/FILO

GRUB2 Will replace FILO, does not work yet http://www.linuxbios.org/GRUB2

Mitch Bradley's

Open Firmware

IEEE1275-1994 Open Firmware http://www.openbios.org/Open_Firmware

CodeGen's

SmartFirmware

IEEE1275-1994 Open Firmware http://www.openbios.org/SmartFirmware

OpenBios IEEE1275-1994 Open Firmware http://www.linuxbios.org/OpenBIOS

GNUFI (UEFI) http://www.gnu.org/software/gnufi/

Etherboot Includes FILO, and its FILO supports

SATA and USB booting

http://www.linuxbios.org/Etherboot

ADLO Glue layer to 16-bit Bochs BIOS.

Allows booting Windows and

OpenBSD

http://www.linuxbios.org/ADLO

Plan 9 A distributed operating system http://www.linuxbios.org/Plan_9

memtest86 Can stress-test your RAM http://www.linuxbios.org/Memtest86

RedBoot / eCos Real-time OS for embedded systems;

initial port to ELF completed but no

longer available.

http://www.linuxbios.org/RedBoot

Table 2.2: Available payloads for the LinuxBios, confer source [COR]

2.2.2.3 (U)EFI

In the mid-1990s, Intel has developed a new platform initialization for the IA64 architecture

named EFI (Extensible Firmware Interface). The Version 1.1 of EFI was used as a starting

point from the UEFI (Unified EFI) forum.

In contrast to the Linux BIOS, the UEFI gets more control over the hardware. The

operating system can only use the specified interfaces. A boot sequence with an EFI is

illustrated in figure 2.1.

Some of the features of UEFI are:

– UEFI is not specific towards processor architectures
– provides a processor-independent device driver environment, called EFI Byte Code

or EBC
– supports remote maintenance
– supports a GUID Partition Table (GPT)
– supports FAT32 as file system
– supports an EFI shell

- 22 -

http://www.kernel.org/
http://www.linuxbios.org/RedBoot
http://www.linuxbios.org/Memtest86
http://www.linuxbios.org/Plan_9
http://www.linuxbios.org/ADLO
http://www.linuxbios.org/Etherboot
http://www.gnu.org/software/gnufi/
http://www.linuxbios.org/OpenBIOS
http://www.openbios.org/SmartFirmware
http://www.openbios.org/Open_Firmware
http://www.linuxbios.org/GRUB2
http://www.linuxbios.org/FILO

– supports a compatibility mode to PC BOIS

The whole specification of UEFI 2.1 can be downloaded from [UEFI2.1] after subscribing

an agreement.

2.2.3 Load boot loader

If no boot loader is included in the firmware, the boot loader will be loaded from the mass

storage device. The boot loader can load the initrd or initramfs image into the RAM (or the

initrd / initramfs image can be loaded by the kernel later). After that, the kernel image will

be loaded and the kernel options will be committed.

2.2.4 Load operation system

2.2.4.1 Kernel

After the kernel is loaded, the hardware detection is executed by the kernel. The supported

hardware will be initialized. Next, the network getting started and the file system getting

mounted.

2.2.4.2 Init

The init process getting started. First, the init script for the default runlevel is executed.

Depending on which distribution is used , several runlevels (confer table 2.3 and 2.4) are

running through to the destination runlevel.

- 23 -

Figure 2.1: Platform and EFI OS Booting Sequence, source [UEFI1.1]

A boot sequence of a Linux based operating system is illustrated in figure 2.2.

Runlevel Description

0 Shutdown with Halt

1 and S Single user

2 Multi user without network, without NFS

3 Multi user with network, but without starting X

4 Usually not used

5 Multi user with network and with starting X

6 Shutdown with reboot

Table 2.3: Runlevel for Fedora, Red Hat and SuSE, confer source [KOF07a]

- 24 -

Figure 2.2: Simplified illustration of a Linux boot sequence, confer source [WIKId]

Runlevel Description

S Initialization of the computer immediately after start

0 Shutdown with Halt

1 Single user with network

2-5 Multi user with network and starting X

6 Shutdown with reboot

Table 2.4: Runlevel for Debian and Ubuntu, confer source [KOF07a]

2.3 Previous publications on “Boot Process and Linux”

Many publications on the topic Boot Process and Linux. The most important and latest

publications are listed below.

The editors of the German journal Linux Magazin have compared in the article

Boot-Beschleuniger im Vergleich (engl. Comparison of accelerator for the boot process)

[LMA05] several init system, which should be used as an alternative to the aged System-

V-Init. Approximately one year later, a separate article [LMA07b] came out with a research

of Upstart, another init system. The student Daniel Parthey has check Initng as substitution

of System-V-Init and LinuxBios as an alternative to the PC-BIOS in his student research

project [PAR06]. At the Embedded Linux Conference Europe (ELC Europe) in the year

2007, Mr. Vitaly Wool has presented the results of his research on Parallelizing Linux boot

on CE Devices [WOO07]. An essential part of the work was to load and initialize drivers in

parallel. Besides this fcache exists, which has started as a weekend project of Jens Axboe

in the year 2006 [AXB06]. Fcache is a remapping cache that is implemented between the

file system and block device. It reduces the seek time of the random read workload of a

hard disk by changing it to sequential access. With readahead and other preload

mechanisms, many alternative to fcache do exist, which are used in many distributions. At

the Ottava Linux Symposium (OLS) in the year 2007, Mr. Michael Opdenacker has

presented his project with the theme Readahead – Time Travel Techniques [OPD07]. It

compares several implementations of readahead versions.

On the openSUSE wiki page there are some articles on the theme of reducing boot time,

e. g. the use of fcache under openSUSE [SUS07a] and in another test the use of upstart

[SUS07b]. At this test, upstart was used only in the compatibility mode to System-V-Init, so

that it could not get any profit out of the new techniques of upstart. For getting the best

performance of upstart, specific scripts has to be used.

An disadvantage of all these publications is, that in each case an other computer systems

was used. Single core as well as dual core systems with a variety of distinct CPUs and

different clock speed have been used. As mass storage several 2.5” and 3.5” hard disks

were utilized. An other problem of the most publications is, that there are no specifics of

the used components e. g. manufacturers and product names of the hard disks are

missing and whether the command queuing is supported by the hard disk and the

- 25 -

controller or not. Because of all this, the results of the several publications can not be

compared to each other.

To conclude from all these publications, is it obscure, what influence the distinct

components and accelerating techniques have on the total boot time.

- 26 -

3 Measuring methods

3.1 Introduction of the measuring methods

3.1.1 Stop watch

3.1.1.1 Short Description of using a stop watch

The most simple way to get a measurement is to use a stop watch. A disadvantage is, that

the accuracy is dependent on the person, that takes the measurement. If the period of a

measuring is long in comparison to the reaction time, the reaction time carries no weight.

An advantage is, that this method of measuring does not have a negative effect on the

system, which is under examination.

How exact a measurement with a stop watch is, is discussed in chapter 3.2.3.

3.1.1.2 Measuring points

The starting and the end point of a measurement with the stop watch can be selected free.

The best choice is to have an acoustic or visual signal at these points.

Unless otherwise noted, the starting point is when typing the return key in the boot loader

Grub, that starts the Linux boot process. As end point the ready to use state of the display

manager GDM is used. This state is reached as visual signal, when the mouse pointer

changes from the clock symbol to an array symbol and as the acoustic signal, when the

ready to use sound is played.

3.1.2 Bootchart

3.1.2.1 Short Description of Bootchart

“Bootchart is a tool for performance analysis and visualization of the GNU/Linux boot

process. Resource utilization and process information are collected during the boot

process and are later rendered in a PNG, SVG or EPS encoded chart.”

“... Bootchart provides a shell script to be run by the kernel in the init phase. The script

will run in background and collect process information, CPU statistics and disk usage

statistics from the /proc file system. The performance data are stored in memory and are

written to disk once the boot process completes.“

Quotes from [BOOa]

- 27 -

3.1.2.2 Measuring points

The starting point of measuring is equivalent to the starting point of the kernel and the end

equals the starting point of the display manager like e. g. XDM, GDM or KDM.

3.1.2.3 How to install Bootchart

• download the bootchart-0.9.tar.bz2 from [BOOb]

• run the install.sh script for installing bootchartd

• add init=/sbin/bootchartd to the kernel options in the boot loader file

• the chart can be generated as png-file with the following command
curl --form format=png --form log=@/var/log/bootchart.tgz \

http://render.bootchart.org:8080/bootchart/render > \

bootchart.png

The prior approach does not work with the distribution Ubuntu. Use the following

instructions instead:

• get the Bootchart package with an package manager like apt-get or synapsis

• login as root

• edit the /etc/init.d/stop-bootchart file to cut off the automatic generation

of the chart at boot time, command out the line create_chart

• logout as root

• the manual chart generation does work as above

- 28 -

3.1.2.4 Sample of a Bootchart chart

At the beginning, for the first few seconds, there is no statistic information shown, because

the /proc file system does not exit at this time.

The first chart shows the activities of the CPUs. The blue graph shows the utilization of the

CPU with user and system activities. The red one, shows the waiting for I/O (Input/Output).

The chart beneath illustrates the activities of the disk. The red graph shows the utilization

of the disk and the green graph the throughput of the disk. The graphs of disk utilization

and I/O wait is similar, because at the boot process the most of the I/O traffic is produced

by the disk. Based on the relative long access latency of the disk, many I/O wait comes

out.

The GANT diagram shows the hierarchies of processes started and their activities, like

running, inactive, because of I/O wait and sleeping.

3.1.3 Fbtt (Florian's Boot Time Tool)

3.1.3.1 Short description of Fbtt

This is a tool written by myself during this diploma thesis. It uses the /proc file system like

Bootchart does, but it reads only ones. In addition it finds out, how many cycles the CPU

has needed since the last power on or reset.

This feature was taken from the student research project of Daniel Parthey [PAR06].

Fbtt is executed by a script used by the display manager GDM.

- 29 -

Figure 3.1: Sample of a chart of Bootchart

3.1.3.2 Measuring points

The starting point of measuring is equivalent to starting point of the kernel and the end

point equals the ready to use state of the display manager GDM.

By calling Fbtt at another point during the Linux boot process, another endpoint is

realizable. The /proc and the regularly file system must exist at this time.

3.1.3.3 How to install Fbtt

• compile the source code of Fbtt (to find in chapter G.1)

 with executing the Makefile or download the binary from [FBT08]

• login as root

• make a directory named /usr/local/sbin with the command

mkdir /usr/local/sbin

• go into the directory, where the binary of fttb is and copy the binary into the

directory /var/log/fbtt with the command

cp fbtt /usr/local/sbin/fbtt

• add following line at the beginning of the file /usr/lib/gdmplay used by GDM

/usr/local/sbin/fbtt > /dev/null

• logout as root

• after a run with Fbtt, the log file can be found in the directory /var/log/fbtt

3.1.3.4 Sample of a Fbtt output file

Output Description

fbtt version: 0.12 Version of used Fbtt

date: 2007-11-06 Date of generating this output

time: 16:47:26 Time of generating this output

boottime: 21.06 The elapsed time in seconds since kernel startup

idletime: 14.54 The idle rate in seconds of the boot time

tsc: 73985517000 State of the Time Stamp Counter since the last power

on or reset. This information can only be converted in

seconds, when no power safe mechanism is used.

Table 3.1: Sample of a Fbtt output file

- 30 -

3.2 Comparison of measuring methods

3.2.1 Description

A measuring is only as good as the measuring method used. Computer-aided measuring

is preferred, because it is more precise than manual. To find out, how trustworthy and

precise the measuring methods are, they will be compared to against each other. For that,

a test series is arranged. However these are tested in parallel. It is also examinated, what

impact the power saving function of the CPU (Cool & Quiet) and Bootchart have on the

accuracy of the time measurement.

The starting and end points are described in detail in chapter 3.1. With Bootchart, three

modes have been tested.

The first mode is the complete operation mode, in which Bootchart chart generates a png-

file automatically after it has stopped the collection. In the second mode, Bootchart does

not generate a start point. This has to be made manually. In the last variant Bootchart is

completely deactivated.

An additional test is made for analyzing the influence of Fbtt. For that a little script was

written.

This script executes three versions of Fbtt. The three versions differ in the filename only,

so that the data is always read from the mass storage and not from the system buffer or

from the cache of the CPU. The script is run in these variants with and without reboot, to

get a result with and without using the system buffer and cache. The power save function

Cool & Quiet is deactivated, so that the time stamp counter (TSC) can be read out and

converted to seconds.

- 31 -

3.2.2 Results

Cool & Quiet Bootchart Bootchart [s] Fbtt [s] Stop Watch [s]

with

complete

22

21

22

29.90

28.56

29.30

30.90

29.58

30.37

without chart

generate

21

21

22

27.46

28.13

28.57

28.32

28.40

29.28

without

-

-

-

26.48

25.05

27.03

27.21

25.56

27.83

without

complete

20

20

21

24.98

24.93

25.99

26.28

26.08

26.83

without chart

generate

21

21

21

24,20

25.79

23.88

24.96

26.70

25.01

without

-

-

-

25.69

24.01

25.45

26.49

24.67

26.14

Table 3.2: Single values of test series with SEA3.5SATA500GB

Cool & Quiet Bootchart Bootchart [s] Fbtt [s] Stop Watch [s]

with

complete 21.66 29.25 30.28

without chart

generate
21.33 28.05 28.67

without - 26.18 26.87

without

complete 20.33 25.30 26.40

without chart

generate

21.00
24.62 25.56

without - 25.05 25,77

Table 3.3: Measured values of central tendency of test series with SEA3.5SATA500GB

- 32 -

Without system buffer and CPU cache With system buffer and CPU cache

TSC Difference Time [s] TSC Difference Time [s]

297558237068 - - 532102424075 - -

297584706409 26469341 0.013 532114105278 11681203 0.006

297611980908 27274499 0.014 532152510749 38405471 0.019

Table 3.4: Influence of Fbtt (Run 1)

Without system buffer and CPU cache With system buffer and CPU cache

TSC Difference Time [s] TSC Difference Time [s]

316859766786 - - 344555883998 - -

316936353326 76586540 0.038 344565011106 9127108 0.005

316963935110 27581784 0.014 344576459964 11448858 0.006

Table 3.5: Influence of Fbtt (Run 2)

Without system buffer and CPU cache With system buffer and CPU cache

TSC Difference Time [s] TSC Difference Time [s]

556644290029 - - 610602463575 - -

556666621010 22330981 0.011 610610955037 8491462 0.004

556694452667 27831657 0.014 610622521438 11566401 0.006

Table 3.6: Influence of Fbtt (Run 3)

3.2.3 Discussion

First at all, it can be noted, that the time of the boot process differs up to two seconds,

even though the same variant and measuring method is applied. Considering how

complex the boot process is and which components (e. g. Scheduler, Native Command

Queuing by the hard disk, latency of each memory level and whole optimization in the

kernel) are involved, this is not amazing. An impact of the configuration of the network

interface can be excluded, because since version 7.04 of Ubuntu this is done by the

Network-Manager after the boot process.

The power saving function Cool & Quiet of the AMD Athlon 64 X2 CPU does influence the

boot process during regular operation only marginally, i. e. without using Bootchart it needs

one second more with the power save function.

The measured values of Bootchart and Fbtt varies enormously. Attention should be paid to

the fact that only the values of the measurement with Bootchart and without chart

generated can be compared with each other.

Without the power save function, the difference is more than four seconds (approximately

25 percent) and with using the power save function, the difference is more than six

seconds (approximately 15 percent). This disadvantage of Bootchart is mentioned

- 33 -

amongst others in [LMA07b]. The reason of this phenomena is, that Bootchart stops the

measurement, when e. g. the GDM (GNOME Display Manager) is started and listed in the

process list. For accelerating the boot process, GDM and other Display Manager move

more and more towards the starting point of the Linux boot process. That implicates, that

other processes are running in the background, which also need resources (e. g. CPU,

mass storage) like Bootchart does.

Therefore the Display Manager needs more time to reach the ready to use state, than

without sharing the resources with other processes, which are running in parallel.

Bootchart is still an essential tool for analyzing the boot process, but is not adequate in

measuring the precise boot time.

The comparison between Fbtt and the stop watch measurement always shows a

difference of approximately one second. The reason of this is, that the starting point of

both measuring methods are not exactly the same. The stop watch measuring method

includes additional time to load the initrd image into the RAM, executed by the boot loader.

Fbtt takes the startup of the kernel as starting point.

The influence of the several measurement methods are different. With Bootchart, it takes

two seconds more by using the power save function Cool & Quiet of the CPU and one

other second for generating the chart of Bootchart at boot time. Without using Cool & Quiet

a negative influence of Bootchart is not verifiable. The influence of Fbtt is so marginal, that

it can only be proofed by reading out the TSC. Fbtt needs less than 0.04 seconds on a

running desktop with a couple of other programs in the background. The ratio of the

needed 0.04 seconds are less than 0.02 percent of the Linux boot time. The method of

using the stop watch has no negative effect on the boot process.

- 34 -

4 Myth of continuously rising boot times
At the same time personal computers get powerful more and more, the amount of

transistors for a CPU is doubling approximately every two years [MOO65]. However still a

lot of people report, that the boot time of a new Linux distribution on a new computer has

increased compared to older system.

Is that assumption right or is it a miss impression?

The first test series tries to unravel the myth. Therefore several distributions (32-bit

versions only) of the last two years (see table 4.1) are installed on a hard disk and tested

on a dual and single core based computer system.

Distribution Version Major release date

Debian 3.1r6a 6. June 2005

Debian 4.0r1 8. April 2007

Ubuntu 6.06 LTS 1. June 2006

Ubuntu 6.10 26. October 2006

Ubuntu 7.04 19. April 2007

Ubuntu 7.10 beta 18. October 2007

SuSE Linux 10.0 6. October 2005

Open Suse 10.1 11. May 2006

Open Suse 10.2 7. December 2006

Open Suse 10.3 RC3 4. October 2007

Table 4.1: Tested distributions for the myth of continuously rising boot times

4.1 Introduction of the different distributions

4.1.1 Debian

Ian Murdock has initiated the Debian project in 1993. Since 1997 the non company owned

project is supported by the non-profit organization Software in the Public Interest (SPI).

Today, the Debian project is maintained by approximately 1000 persons. [WIKIa][DEBI]

The prepackaging of this distribution is very conservative. It attaches great importance to

stability and safety. [DIST07]

- 35 -

4.1.2 Ubuntu

Ubuntu is based on Debian GNU/Linux. But in the back of Ubuntu is a company, named

Canonical Limited, established in 2004 by the South African billionaire Mark Richard

Shuttleworth. Instead of making profit Mark. R. Shuttleworth tributes several millions of

dollar to Canonical Limited every year. [WIKIb]

Ubuntu is focused on an user-friendly installing process and maintainable operation

system. It is particularly suitable for Linux beginners.

This distribution has a very modern prepackaging. Two versions do exist, one puts more

emphasis on being up to date and innovation and the other on stability and safety.

[DIST07]

4.1.3 OpenSUSE / SuSE Linux

OpenSUSE is based on SuSE Linux. The first version was released in 1994. Today, the

commercial version is distributed under the name SuSE Linux, and openSUSE the free

community version. [WIKIc]

This distribution is not so conservative as Debian and not so modern as Ubuntu. It brings

a couple of interesting tools developed by SuSE e. g. Yast [YAST] and AppArmor [APPA].

4.2 Configuration of the distribution

The default settings were taken from each distribution. An exception was made by the

choice of the window manager. Gnome was chosen for all system. The partitioning of the

hard disk which covers all evaluated Linux distributions can be seen in table 4.2. Always

the latest versions are installed locally behind the older ones with the effect that the latest

versions suffer from lower bandwidth due to hard disk characteristics. The output of the

hard disk benchmark h2benchw [HEI] diagram of the SEA3.5SATA500GB shows (see

chapter B.2), that the throughput decreases with ascending block numbers.

The third extended file system (ext3) is always used. In addition the automatic login is

deactivated and at last the check of the file system is switched off with setting the fsck

option in /etc/fstab to zero.

Wholly different is the installation process of Debian 3.1, because the standard installation

does not work. Several conflicts could not be detached. Therefore the installation was

made manually without any network connection because of problems with the handling of

packages with an Internet connection. The selection was made in a way that it fits closely

to the desktop installation package set.

- 36 -

Kernel version 2.6 was chosen because all of distributions are based on it. The select the

2.6 kernel for Debian 3.1 the selection was made by typing linux26 at the boot prompt of

the Debian 3.1 installation CD.

Range (GiB) Distribution File System

0 - 1 swap swap

+ 100 free -

+ 20 Ubuntu 6.06.1 ext3

+ 20 Ubuntu 6.10 ext3

+ 20 Ubuntu 7.04 ext3

+ 20 Ubuntu 7.10 beta ext3

+ 20 SuSE Linux 10.0 ext3

+ 20 SuSE Linux 10.1 ext3

+ 20 Open SuSE 10.2 ext3

+ 20 Open SuSE 10.3 RC3 ext3

+ 20 Debian 3.1r6a ext3

+ 20 Debian 4.r1 ext3

Table 4.2: Partition table for the test series: The myth of continuously rising

boot times

4.3 Used measuring methods

The measuring is done manually with a stop watch. Starting point and end point are

chosen as described in chapter 3.1.1.2.

A single core consecutively named ATH64_1.8 and a dual core system named

ATH64X2_2.0 are investigated. The system configurations can be seen in detail in the

appendix A. As mass storage the desktop hard disk (3.5” disk) named SEA3.5SATA500GB

is used. The technical data of the hard disk can be look up in the appendix chapter B.2.

After the installation of the hard disk into the second system, the configuration of the

graphics card had to be modified, because the graphics cards are different in both system

(confer appendix chapter A.1 and A.2) and require distinct drivers. After all errors referring

the X-Server has been removed the next series of measurement were stared.

The first measurement is done without any update of the operating system and the second

run was taken after the update has been applied.

- 37 -

4.4 Results

A value consists of three measurements. Each run is rounded to a second and then the

arithmetic mean is calculated, which is once again rounded to a second.

Distribution
ATH64X2_2.0

[s]

ATH64X2_2.0

+ updates [s]

ATH64_1.8 [s] ATH64_1.8 +

updates [s]

Ubuntu 6.06.1 43 35 33 37

Ubuntu 6.10 26 26 28 27

Ubuntu 7.04 32 32 33 33

Ubuntu 7.10 Beta 27 27 30 28

SuSE Linux 10.0 23 43 45 43

SuSE Linux 10.1 44 35 55 37

Open SuSE 10.2 47 42 79 56

Open SuSE 10.3 RC3 26 25 34 34

Debian 3.1 r6a 42 42 43 43

Debian 4 r1 26 25 28 27

Table 4.3: Boot time of different distributions

- 38 -

4.5 Discussion

The comparison between the installation of the distributions with and without updates of

the operating system shows, that the measurements of the systems without updates have

some unusual mavericks with extreme short and extreme long boot time. With the

installation of the updates, these mavericks have disappeared. A possible cause for the

mavericks are bugs, which are fixed with the updates.

The result of Debian 3.1 is similar to the one in [PAR06a]. The single core system, which

was tested in the publication [PAR06] is comparable with the ATH64_1.8 system.

Therefore it can be assumed, that the manual selection of the packages correspond to the

default installation named Desktop in terms of the boot time behavior.

Following only the installations with updates are considered. It is interesting to follow the

history of the several distributions. In Ubuntu 6.10 the System-V-Init is replaced with

upstart. Upstart brings a distinct advantage of nine seconds with ATH64X2_2.0 and ten

seconds with ATH64_1.8. The version 7.04 loses some seconds and the version 7.10

recovers a couple of seconds. The history of the boot time with the SuSE distributions as

- 39 -

Figure 4.1: Boot time of different distributions

Ubuntu 6.06.1

Ubuntu 6.10

Ubuntu 7.04

Ubuntu 7.10 Beta

SuSE Linux 10.0

SuSE Linux 10.1

Open SuSE 10.2

Open SuSE 10.3 RC1

Debian 3.1 r6a

Debian 4

0 10 20 30 40 50 60 70 80 90

ATH64X2_2.0 ATH64X2_2.0 + updates ATH64_1.8 ATH64_1.8 + updates

[s]

follows: With the change from version 10.0 to 10.1 the time reduces and with version 10.2

increases intensively. With the version 10.2 a new package management system named

ZMD is adopted. Mostly ZMD is responsible for the deterioration. With the version 10.3 of

the community version openSUSE ZMD is replaced with lipzypp and zypper. With other

changes [GIA07], the boot time is shortened to the best result of the SuSE distributions of

the last two years. The speed up of the Debian boot process has increased from version

3.1 to version 4 to a high degree. Debian 4 is still using System-V-Init as init system.

The Myth of continuously increasing boot times is busted when we are looking at latest

versions. It can be said, that the latest versions need least time for the booting process

than all other previous versions of each distribution in the last two years.

But why is the impression emerging, that the start up of a computer is increasing

continuously. This is because, the time, which the firmware e. g. PC-BIOS needs to start

up, is not included in the tests before. The issue, that the configuration of a PC-BIOS can

differ up to 28 seconds, has Daniel Parthey shown in his student research project

[PAR06b]. Therefore, it can not be excluded, that one or another new computer does need

more time for booting up, as an old one. In the majority of cases, Linux is not the reason

for the increase of the time of the boot process. Only with SuSE from version 10.1 to

version 10.2 the time of the boot process of Linux increases and insignificantly with Ubuntu

from version 6.10 to version 7.04.

- 40 -

5 Research of the latest versions

5.1 Evaluation of boot times with using traditional mass storage

5.1.1 Configuration

The configuration is the same as described in chapter 4.2, with the difference, that only the

latest version of each distribution is installed. The partitioning of the disks are shown in

table 5.1. For this the mass storages SEA3.5SATA500GB and SAM2.5SATA100GB are

used with the System ATHX2_2.0.

Range (GiB) Distribution File System

0 - 2 swap swap

+ 10 free -

+ 10 Ubuntu 7.10 beta ext3

+ 10 openSUSE 10.3 ext3

+ 10 Debian 4 ext3

Table 5.1: Partition table of both hard disks for the research of the latest versions

5.1.2 Measuring methods

The measuring is done manually with a stop watch as described in chapter 3.1.1.2.

- 41 -

5.1.3 Results

ATH64X2_2.0

SAM2.5SATA100GB

[s]

ATH64_1.8

SAM2.5SATA100GB

[s]

ATH64X2_2.0

SEA3.5SATA500GB

[s]

ATH64_1.8

SEA3.5SATA500GB

[s]

Debian 4 30 31 24 24

Ubuntu 7.10 beta 33 33 27 29

OpenSuse 10.3 31 36 26 36

Table 5.2: Boot time of the distributions Debian 4, Ubuntu 7.10 beta, openSUSE

5.1.4 Discussion

Debian 4 and Ubuntu 7.10 beta show a similar behavior. That is not amazing, because

Ubuntu is a descendant of Debian. The single core and dual core need the same boot

time. The reason is, that CONCURRENCY=none setting is used by default. A minor

advantage of the time difference comes from the unequal clock speeds. With openSUSE

10.3 the difference between single and dual core is larger with up to five to ten seconds

respectively. OpenSUSE 10.3 has the parallel execution enabled by default. The system

ATH64_1.8 with the single core is restricted by the power of the CPU and not by the

capability of the mass storage. With Ubuntu 7.10 and Debian 4 the limitation is the mass

storage.

The measurement values of each distribution on the ATH64X2_2.0 system with

SEA3.5SATA500GB as mass storage are almost equal. This is amazing, because each

distribution uses another init system for the boot process. Debian 4 use the over 20 years

old System-V-Init, but it has the best boot time of all.

- 42 -

Figure 5.1: boot time of the distributions Debian 4, Ubuntu 7.10 beta, openSUSE

Debian 4

Ubuntu 7.10 beta

OpenSUSE 10.3

0 5 10 15 20 25 30 35 40

ATH64X2_2.0
SAM2.5SATA100GB
ATH64_1.8
SAM2.5SATA100GB
ATH64X2_2.0
SEA3.5SATA500GB
ATH64_1.8
SEA3.5SATA500GB

[s]

In next chapter the latest versions of the distributions are analyzed on the ATH64X2_2.0

system with SEA3.5SATA500GB as mass storage and with Bootchart in terms of the

behavior of the boot process.

5.2 Analysis of the boot process with Bootchart

5.2.1 Configuration

The same configuration as in chapter 5.1.1 described it used but with the exception, that

only the ATH64X2_2.0 system with the SEA3.5SATA500GB as mass storage is applied.

5.2.2 Used measuring methods

Bootchart is used for getting more information on the boot process at the boot time.

5.2.3 Results

5.2.3.1 Bootchart of Debian 3.1

The chart of Debian 3.1 is chosen as an example for an older version with no optimization

of the boot process. This result corresponds to one which is shown in [PAR06a].

- 43 -

Figure 5.2: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB (Debian 3.1)

5.2.3.2 Bootchart of Debian 4

5.2.3.3 Bootchart of Ubuntu 7.10

- 44 -

Figure 5.3: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB

(Debian 4)

Figure 5.4: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB

(Ubuntu 7.10)

5.2.3.4 Bootchart of OpenSuse 10.3

5.2.4 Discussion

It can be noted, that Bootchart does not get the correct boot time. With Debian 4 (25

versus 24 seconds) and OpenSuSE 10.3 (31 versus 27 seconds) the measurement is

finished too late and with Ubuntu (23 versus 29 seconds) too soon. The values of

reference are the ones which are got with the stop watch in chapter 5.1.3.

The tested versions of the several distributions are using different init systems. Debian 4 is

still using System-V-Init, Ubuntu from version 6.10 upstart [UPS07] and OpenSuSE since a

long time startpar, a init system like Initng [GIA07].

The boot chart of Debian 3.1 shows a lot of sections, where neither the CPU nor the hard

disk have any activity, e. g. between the time spread of 17 to 21 seconds. In this situation

a process is waiting for a specific event and holds up the whole boot process. The current

distributions have no or only a tiny sections, e. g. Ubuntu 7.10 at the moment 15 seconds

after the start of the Linux kernel.

A comparison of the Gant diagrams of the several distributions show, that Debian 4 has

the least processes with 82, which are started at boot time. With this amount of processes

Debian 4, which is based on the old System-V-Init, achieves the best boot time.

OpenSuSE 10.3 executes 130 processes in 27 seconds of boot time until the the display

manager GDM is ready for login. Ubuntu starts 88 in 23 seconds, but it is unclear how

- 45 -

Figure 5.5: Abstract of the boot chart of ATH64X2_2.0 and SEA3.5SATA500GB (openSUSE 10.3)

many processes are started in the remaining six seconds and no accurate number can be

given, because Bootchart stops the analysis to soon. It is assumed, that the total number

of started processes is similar to OpenSuSE 10.3.

The distributions have a couple of mechanisms to accelerate the boot process. The kernel

has a readahead implementation. With readahead the access to a file is speed up by

preloading at least parts of its contents into the page cache ahead of time. A report of this

method is shown in [OPD07]. Beyond this another preloading mechanism, file list based,

does exist, which preloads all the files needed during the booting process. These are

labeled different in each distribution and the implementation is also different. For Fedora

and Red Hat it is readahead, for Ubuntu readahead-list und for SuSE preload [KOF07b].

The idea of a file list based preloading is to load the data in advance, which is necessary

for the boot process, before or during the boot process. It is to differ between the

preloading during the boot process and the preloading done for applications like Firefox,

OpenOffice etc. The tested versions use only the preload for the boot process.

The chart of Ubuntu 7.10 shows, that Ubuntu 7.10 uses readahead-list at the beginning of

the boot process. In older versions, it was done in the background, parallel to the normal

boot process. It turned out, that in the most time, the execution in the background is slower

than the execution in the front [JDO06]. OpenSuSE 10.3 uses preload in the background.

That is why the utilization of the hard disk is different. At the beginning, Ubuntu has a huge

utilization of the hard disk with hight data throughput and then only few hard disk activities.

OpenSuSE 10.3 has alternating load of the hard disk all the time.

The usage of readahead-list in Ubuntu 7.10 with the system ATH64X2_2.0 and

SEA3.5SATA500GB as mass storage achieves a decrease in time about three seconds

only. The corresponding chart of Bootchart without readahead-list can be seen in the

appendix in chapter E. The advantage of a readahead list is significantly larger when an

old hard disk without command queuing and with larger access time is used compared to

new one.

- 46 -

6 Influence of several mass storages to

the boot behavior

6.1 Local mass storage

6.1.1 Configuration for the hard disks and flashes

The configuration of the hard disks are the same as described in chapter 5.1.1, but only

the installation of Ubuntu 7.10 beta is used.

A SATA-CF-Adapter (see appendix chapter C.1) connects the compact flash to the SATA

controller. This adapter makes some trouble with NVIDIA chip sets (confer appendix

chapter C.1.1).

The partition of the compact flash storages are shown in table 6.1. All updates are

installed, which are available at the date of testing. TRACF4GB (a hight end CF card) and

TAKCF4G (a low cost CF card) are used as flash memory. A solid state disk (SSD) was

announced to get, but it is not available yet. SEA3.5SATA500GB and SAM2.5SATA100GB

are used as desktop and notebook hard disks.

Range (MiB) Distribution File System

0 - 3645 Ubuntu 7.10 beta ext3

+ 220 swap swap

Table 6.1: Table of partitioning of the flash medias

6.1.2 Measuring methods

The measurement method for most of the tests is Fbtt and exerted as described in chapter

3.1.3. For the evaluation of the theoretical boot time of this system with a mass storage,

which is unlimited in the data transfer rate, a chart of Bootchart will be generated. A

reprofiling of a readahead-list need to be done before (refer chapter 7.2.2.4), therefore

most of the access to the hard disk is done with the readahead-list. In addition, further

measurements are done with Fbtt with the setting with and without the use of readahead-

list in conjunction with a flash medium. Therefore it can be found out, whether readahead-

list results in an advantage by using flash memory compared to a hard disk (refer chapter

5.2.4).

- 47 -

6.1.3 Results

Local Mass Storage Run 1 [s] Run 2 [s] Run 3 [s] mean [s]

SAM2.5SATA100GB 35.94 31.62 35.43 34.33

SEA3.5SATA500GB 27.99 29.36 25.70 27.68

TRACF4GB 21.52 22.46 20.09 21.36

TAKCF4GB 68.04 48.70 65.45 60.73

Table 6.2: Boot times of several local mass storages on ATH64X2_2.0

TRACF4GB Run 1 [s] Run 2 [s] Run 3 [s] mean [s]

normal, before reprofile 21.52 22.46 20.09 21.36

after reprofile 21.17 21.14 20.04 20.78

without readahead-list 21.31 21.14 20.29 20.81

Table 6.3: Results of the influence of readahead-list

- 48 -

Figure 6.1: Boot times of several local mass storages on ATH64X2_2.0

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

34.33

27.68

21.36

60.73

SAM2.5SATA100GB
SEA3.5SATA500GB
TRACF4GB
TAKCF4GB

[s]

The complete charts of Bootchart are in the appendix E.

6.1.4 Discussion

Expectedly the desktop hard disk SEA3.5SATA500GB is faster than the notebook hard

disk SAM2.5SATA100GB at the boot process. A huge difference exists between the two

compact flash memories TAKCF4GB and TRACF4GB. The TRACF4GB reaches the best

time in booting up with 21.36 seconds in the mean. In contrast, the TAKCF4GB is

significantly the slowest medium with 60.73 seconds in the mean. A incompatibility with

TAKCF4GB, the SATA-CF-Adapter and the NVIDIA chip set (refer appendix chapter C.

1.1) can be excluded, because a similar behavior is shown with a system (P4_3.2) based

on a Intel Pentium 4 CPU and Intel chipset. For more details on the system P4_3.2, see

appendix A.5. To find out, why the boot process needs so much time with the TAKCF4GB

- 49 -

Figure 6.2: Abstract of the boot chart of TRACF4GB

without use of readahead-list

Figure 6.3: Abstract of the boot chart of TRACF4GB

after reprofiling readahead-list

another boot chart is generated (see appendix E). There are no anomaly to see up to the

point, when Bootchart aborts the collecting of data. This corresponds with the output on

the screen during the boot process. During the splash screen is shown, the progress bar

increases continuously, but by switching to the display manager GDM it slows down

enormously. A reason for the very bad result could be the random read and write access to

the TAKCF4GB (see appendix B.4 h2benchw value of “installieren”). There is the same

phenomenon when using the desktop environment. In contrast, there are no restrictions

when using the high end compact flash memory TRACF4GB.

Let us take a theoretical view on the boot time of Ubuntu 7.10. What for a shortest boot

time can be reached with a mass storage, which is unlimited in the data transfer rate? After

the reprofiling (refer chapter 7.2.2.4) the bulk of the mass storage activity is made by the

process readahead-list. With a mass storage, which is unlimited in the data transfer rate,

the time of readahead goes to zero. There are no more intensive mass storage activities,

so that the time of readahead-list (approximately two seconds) can subtracted from the

whole time (approximately 21 seconds) to get the theoretical best time of 19 seconds.

Now, we have a look on the influence of readahead-list in relation to flash memory.

Readahead-list has been developed for reducing the seek time of the access to hard disks

by avoiding the movements of the read and write head. Flash memory does not have any

moving parts, so that readahead-list should not result in an advantage. This presumption is

confirmed by the results of the Fbtt measurements. There is no real difference between the

time with and without using readahead-list. To verify the measurements, a boot chart of

both variants is generated. The different access to the mass storage can be seen very

clear.

6.2 Network mass storage

6.2.1 Configuration for the net boot

6.2.1.1 Introduction to configure the client

It is possible to load the data for the boot process from a RAM disk over the network.

Therefore a minimal installation of Ubuntu 7.10 is used, which needs < 512 MiB and fits

into a RAM disk. A temporary file system (tmpfs) can not be used as file system, because

NFS does not support such a file system [NFS].

As starting point the installation selection of a command-line system is used from the

installation medium Alternate CD of the Ubuntu 7.10 distribution.

After that, the packages xserver-xorg, x-window-system-core, gdm, nfs-common and

feisty-gdm-themes are installed with the following commands. They should be installed

one after another, because faults are easier to find.

- 50 -

sudo apt-get install xserver-xorg -fix-missing

sudo apt-get install x-window-system-core

sudo apt-get install gdm

sudo apt-get nfs-common

sudo apt-get feisty-gdm-themes

After the installation of the previous packages, many temporary files are in the directory

/var/cache/apt/ (approximately 65 MiB). These can be deleted without hesitation.

For playing the sound at the moment the display manager GDM is ready for login, the

sound file question.wav has to be copied from another system into the directory

/usr/share/sounds/.

For the automatic measurement Fbtt has to be installed (see chapter 3.1.3).

At the end the previous configuration needs 476 MiB of disk space.

6.2.1.2 Introduction to configure the server

The server uses Ubuntu 7.10 (desktop version) as operating system.

The packages needed additionally can be install with:
sudo apt-get install dhcp3-server \
tftpd-hpa syslinux nfs-kernel-server initramfs-tools

Some directories must be created and the pxelinusx.0 file copied to right directory

sudo mkdir -p /tftpboot/pxelinux.cfg

sudo mkdir /nfsrootm

sudo mkdir /nfsrootr

sudo cp /usr/lib/syslinux/pxelinux.0 /tftpboot

After that, the DHCP-server needs to be configured. The client gets a static IP from the

DHCP-server. The IP address of the router and domain-name-server need to be adopted.

The used configuration of /etc/dhacp3/dhcpd.conf looks like below:

#file /etc/dhcp3/dhcpd.conf

- 51 -

allow booting;
allow bootp;
subnet 192.168.4.0 netmask 255.255.255.0 {
 range 192.168.4.100 192.168.4.200;
 option broadcast-address 192.168.4.255;
 option routers 192.168.4.1;
 option domain-name-servers 192.168.4.1;

 #filename "/pxelinux.0";
 filename "pxelinux.0";

}

force the client to this ip for pxe.
This is only necessary assuming you want
to send different images to different computers.
host pxe_client {
 hardware ethernet 00:11:D8:2A:5C:1E;
 fixed-address 192.168.4.5;
}

In [SCL06] and [UBD07] the filename for pxelinux.0 is denoted with

filename "/pxelinux.0";

This configuration does not work, the boot process over the network fails. With removing

the slash, the boot up works.

Before running tftp, it needs to be configured to run in the daemon mode.

In the /etc/default/tftp-hpa file RUN_DAEMON="no" has to be changed to

RUN_DAEMON="yes" and the option line to OPTIONS="-l -s /tftpboot".

The content of /etc/default/tftp-hpa is now:

#Defaults for tftpd-hpa
RUN_DAEMON="yes"
OPTIONS="-l -s /tftpboot"

The tftp-hpa service can be started now.

sudo /etc/init.d/tftp-hpa start

The config file for the boot loader must be created. The content of the used file in the

/tftpboot/pxelinux.cfg directory is:

- 52 -

LABEL linux
KERNEL vmlinuz-2.6.22-14-generic
APPEND root=/dev/nfs initrd=initrd.img-2.6.22-14-generic.nfs
nfsroot=192.168.4.1:/nfsrootm ip=dhcp rw

The filename can be the mac address of the client or common default. The file with the

name of the mac address will be demanded first and the default at last.

After that, the export file /etc/exports must be configured (add the directory, which

should be exported) and sync the file with

exportfs -rv

The used /etc/exports has the content

/etc/exports: the access control list
for filesystems which may be exported
to NFS clients. See exports(5).
/nfsrootr 192.168.4.5(rw,no_root_squash,async)
/nfsrootm 192.168.4.5(rw,no_root_squash,async)

It is important, that the async option is used. The asynchronous transfer is faster than the

synchronous one.

Now, the tftp server is configured, but the data for the client must be put in the right place.

If the server uses the same kernel as the client, the initramfs image can be generated on

the server, otherwise the initramfs-tools package must be installed at the client and

the initramfs image generated.

Before generating the initramfs image the configuration file

/etc/mkinitramfs/initramfs.conf must be adjusted.

The line with BOOT= must be changed from

BOOT=local
to

BOOT=nf

The initramfs can be generated on the server with the command

mkinitramfs -o \
/var/lib/tftpboot/initrd.img-2.6.22-14-generic.nfs

and copy the kernel to the tftpboot directory with

- 53 -

cp /nfsroot/boot/vmlinuz-2.6.22-14-generic \
/var/lib/tftpboot/vmlinuz-2.6.22-14-generic

After that, the initramfs.conf should be changed back to avoid errors in the future with

other configurations.

The data of the client has to be transferred to the server. For that, connect the client with

the server, boot up to the display manager GDM and change with Ctrl+F1 to a tty-

terminal. Then type the following commands:

sudo mkdir /mnt/nfsroot

sudo mount -tnfs -onolock \
192.168.4.1:/nfsrootm /mnt/nfsroot

sudo cp -ax /. /mnt/nfsroot/.

sudo cp -ax /dev/. /mnt/nfsroot/dev/.

The network interface information in the configuration file

/nfsrootm/etc/network/interfaces on the Server has to be commented out.

auto eth0

Otherwise the client tries to initialize and start up the network interface again. The

consequence is, that the connection with the server is cut off.

Last but one, the fstab file in /nfsrootm/etc/ must be modified. The following

configuration was taken:

/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump>
<pass>
proc /proc proc defaults 0 0
/dev/nfs / nfs defaults 1 1
none /tmp tmpfs defaults 0 0
none /var/run tmpfs defaults 0 0
none /var/lock tmpfs defaults 0 0
none /var/tmp tmpfs defaults 0 0

Last, in the BIOS of the client, boot from LAN must be activated. If there are options for

different LAN boot methods, something named PXE is to choose. On the ASUS A8N-SLI-

Deluxe and other main boards with NVIDIA chip set use the NVIDIA Boot Agent. Now the

hard disk of the client can be removed.

- 54 -

Tip: In all configuration files the double quotes and single quotes must be the right ones.

This is often the source for an error.

Variants

Using the hard disk of the server

Reboot the client and reboot the sever, too. After the first reading, the used data is in the

system buffer and with a reboot of the server, the system buffer is clean again.

Using the hard disk and the system buffer of the server

The client is rebooted without a reboot of the server. After the first reading, the data used is

in the system buffer and during the next request the data will be read from there.

Using the RAM disk

Append the kernel option for the ramdisk size in the config file /boot/grub/menu.lst of

the grub boot loader.

ramdisk_size = 525000

After reboot, the RAM disk can be created with the commands:

sudo mke2fs -vm 0 /dev/ram0 515000

sudo mount /dev/ram0 /nfsrootr

If the RAM disk really exists, can be verified with the command:

sudo mount | grep ram0

The output of the previous command must be:

/dev/ram0 on /nfsrootr type ext2 (rw)

If the RAMDisk is ready for use, the data can be copied to it.

sudo cp -ax /nfsrootm/. /nfsrootr/.

Last, the config file for the boot loader must be change from

APPEND root=/dev/nfs initrd=initrd.img-2.6.22-14-generic.nfs
nfsroot=192.168.4.1:/nfsrootm

- 55 -

to
APPEND root=/dev/nfs initrd=initrd.img-2.6.22-14-generic.nfs
nfsroot=192.168.4.1:/nfsrootr

For each measurement the server has to be rebooted, so that the system buffer is really

clean. The previous steps has to be made again. The last step is not to be repeated,

because it is non-volatile.

Using the RAM disk and the system buffer of the server

The client is rebooted without a reboot of the server. After the first reading, the used data is

in the system buffer and during the next request the data will be read from it.

6.2.2 Measurement methods

The measurement method is Fbtt and exerted as described in chapter 3.1.3.

6.2.3 Results

Three measurements are done and the arithmetic mean is calculated.

NFS Hard Disk [s] RAM Disk [s]

without system buffer 33.30s 23.07s

with system buffer 21.52s 21.53s

Table 6.4: Values of NFS boot, Fbtt method

The reference time of the minimal system with SEA3.5SATA500GB is 22.55 seconds,

measured with Fbtt and 23,32 seconds using the stop watch.

NFS Hard Disk [s] RAM Disk [s]

without system buffer 37.89 31.53

with system buffer 25,88 25.78

Table 6.5: Values of NFS boot, stop watch method

A measurement series with the stop watch results in more time in the range of three up to

eight seconds. The message “DHCP../” is used as starting point and the ready to login

state of the display manager GDM as end point. The additional time at the beginning

includes the time for exchanging the DHCP information up to the point of starting the

kernel. By using local storage, the boot time is only one second more.

- 56 -

6.2.4 Discussion

The boot process over a Gigabit Ethernet network does not result in an advantage in time

in comparison with the values of the Fbtt measurement. The client reaches the time of a

system with SEA3.5SATA500GB as local mass storage only by reading out the data from

the system buffer. The overhead of NFS and the latency of the Ethernet is to high. Besides

this the time for DHCP and PXE comes along, which is included in the measurement with

the stop watch. The reason for the huge fluctuation in the time of booting over network, is

the exchange of DHCP information. It can be completed in less than one second or take

up to 5 seconds. DHCP can not be parallelized by booting over the network. An alternative

can be the use of Etherboot/gPXE instead of PXE or a static IP, when the firmware can

support it.

6.3 Spread of the measurement values

6.3.1 Description

The phenomenon of the spread has been discovered by the comparison of the different

measurement methods (see chapter 3.2).

With the experiment of tweaking Ubuntu (see chapter 7) by using the flash memory

TRACF4GB the sneaking suspicion arises, that the spreading of the measurement values

are larger with this type of memory. As a result of this experience, here we go into that

matter.

- 57 -

6.3.2 Results

Cool & Quiet Bootchart Bootchart [s] Fbtt [s] Stop Watch [s]

with

complete

15

17

18

21.07

22.11

23.71

21.28

21.72

23.93

without chart

generate

18

17

18

22.71

22.48

22.55

22.94

22.74

22.85

without

-

-

-

21.52

22.46

20.09

21.66

22.96

20.63

without

complete

17

16

18

20.31

19.13

21.06

20.80

19.39

21.44

without chart

generate

17

16

17

23.05

20.31

20.94

22,83

20.52

21.14

without

-

-

-

19.50

19.19

20.35

19.69

19.46

20.82

Table 6.6: Single values of test series with TRACF4GB

Cool & Quiet Bootchart Bootchart [s] Fbtt [s] Stop Watch [s]

with

complete 16.67 22.30 22.31

without chart

generate
17.67 22.58 22.84

without - 21.36 21.75

without

complete 17.00 20.16 20.54

without chart

generate
16.67 21.43 25.56

without - 19.68 19,99

Table 6.7: Measures of central tendency of test series with TRACF4GB

- 58 -

| max – min | = Difference

| 22.46 – 20.09 | = 2.37

| 23.71 – 21.07 | = 2.64

| 22.71 – 22.48 | = 0.23

| 20.35 – 19.19 | = 1.16

| 20.31 – 19.13 | = 1.18

| 23.05 – 20.31 | = 2.74

Table 6.8: Single values of difference of minimal and

maximal for TRACF4GB

| max – min | = Difference

| 29.90 – 28.56 | = 1.34

| 28.57 – 27.46 | = 1.11

| 27.03 – 25.05 | = 1.98

| 25.99 – 24.93 | = 1.06

| 25.79 – 23.88 | = 1.91

| 25.69 – 24.41 | = 1.28

Table 6.9: Single values of difference of minimal and

maximal for SEA3.5SATA500GB

Formula for the mean difference of minimal and maximal values:

m storage=∑
i=1

x

∣max i−mini∣/ x whereas i is the number of test run from i=1..x

Result for the mean difference of minimal and maximal values for the storage TRACF4GB

and SEA3.5SATA500GB:

mTRACF4GB=1.72

mSEA3.5SATA500GB=1.45

6.3.3 Discussion

The comparison of the values by using TRACF4GB and the values of SEA3.5SATA500GB

(see chapter 3.2.2) shows, that the spreading is really larger. For a complete statistical

analysis the number of passes are not sufficient. The number of passes has been limited,

because the most components were only temporarily available for the test environment.

- 59 -

But the tendency is visible. The anomalies of the flash storages are proved in the diploma

thesis Analyzing Real-Time Behavior of Flash Memories [PAR07].

Because of the enormous spread it is impossible to draw conclusions from the results of

the measurement with the flash memory of the impact of Cool & Quiet and Bootchart.

- 60 -

7 Tweaking Ubuntu 7.10 to reduce boot

time

7.1 Description

How can the boot time be reduced, without diminishing the compatibility and usability?

Some promising hints are given in [THE07]. In this publication the boot time of Ubuntu

7.04 Ultimate is reduced from 35 to 15 seconds (measurement method was Bootchart).

7.2 Configuration

7.2.1 Point of start

To get the shortest boot time the fastest medium is chosen. So the starting point is the

installation of Ubuntu 7.10 beta on the TRACF4GB.

7.2.2 Removing services

7.2.2.1 Services applet

This tool can be found under System >> Administration >> Services. The

settings are changed as illustrated in table 7.1.

- 61 -

Name of service Default setting Change to

anacron enabled disabled

atd enabled disabled

apport enabled disabled

bluetooth enabled disabled

ntp - -

klogd enabled disabled

sysklogd enabled disabled

powernowd enabled enabled

mysql - -

mysql-ndb - -

mysql-ndb-mgm - -

nfs-kernel-server - -

samba - -

gdm enabled enabled

hdparm disabled disabled

lm-sensors - -

hotkey-setup enabled disabled

avahi-daemon enabled disabled

nessusd - -

acpid enabled enabled

apmd enabled disabled

cupsys enabled enabled

hplip - -

ssh - -

portmap - -

dbus enabled enabled

screen - -

apache2 - -

Table 7.1: Settings of services

7.2.2.2 Boot-up-Manager (B.U.M.)

This tool has to be installed before. The following command is used in a terminal.

sudo apt-get install -y --force-yes bum

- 62 -

Now this tool can be found under System >> Administration >>

Boot-up Manager. The settings are changed as illustrated in the table 7.2.

Name of service Default setting Change to

cron enabled disabled

laptop-mode enabled disabled

rsync enabled enabled

snort enabled enabled

upstart enabled disabled

Table 7.2: Settings of services changed with Boot-up-Manager

(B.U.M.)

7.2.2.3 Sysv-rc-conf

This tool has to be installed before. The following command is applied for this.

sudo apt-get install -y --force-yes sysv-rc-conf

With this tool only Britty and pcmcia-uti$ have been deactivated.

7.2.2.4 Reprofile readahead-list

After all, the readahead-list has to be updated, otherwise there is no effect, because the

files of the services will be loaded in the file system cache again. For that, the profiling

mode of the readahead-list has to be executed. In the boot loader the option profile has to

be added in the following way:

At the boot up menu (GRUB) select the default kernel. Then press e for edit and choose

the first line, that starts with kernel and press e again. After that move to the end of the

line, add the word profile and press enter. At last, press b to boot. [JDO06]

7.2.3 Acceleration the file system

As file system ext3 is used. For ext3 three journaling methods exist, Journal Data

Writeback, Journal Data Ordered and Journal Data. Journal Data Ordered is chosen by

default. In the ordered mode, ext3 only journals meta data, but it logically groups meta

data and data blocks in a single transaction. The associated data blocks are written first,

when it is necessary to write the new meta data out to disk. In general, Ordered method of

the ext3 file systems is slightly slower than the Writeback, but is significantly faster than

the full data journaling. [THE07]

- 63 -

The method is changed from Ordered to Writeback. Unlike described in [THE07] the

command

sudo update grub

is not used, because is rewrites splash into the /boot/grub/menu.lst. No changes are

needed in this file in the version 7.10 of Ubuntu.

Open with

sudo gedit /etc/fstab

the /etc/fstab in an editor and look for defaults,errors=remount-ro and change

it to defaults,errors=remount-ro,data=writeback,noatime .

At least, the command

sudo tune2fs -o journal_data_writeback /dev/yourdrive

has to be executed. Yourdrive has to replaced with the real drive identifier.

7.2.4 Parallel execution

The file /etc/init.d/rc is to edit. The line

CONCURRENCY=none

is changed to

CONCURRENCY=shell

This change generates an error after the login. That is maybe the reason, why the default

for concurrency is none. The bug is known and described in [BUG]. The cause of the bug

is, that the HAL daemon does not wait enough for Dbus.

An easy workaround exists. The starting point of HAL has to be changed to the next level,

from S12 to S13. For this the following command needs to be executed only:

sudo mv /etc/rc2.d/S12hal /etc/rc2.d/S13hal

With this change Dbus is always ready before HAL is executed.

- 64 -

7.3 Results

Run Run 1 [s] Run 2 [s] Run 3 [s] Run 4 [s]

Starting Point 21.53 20.06 19.91 22.15

Deactivate Services 20.64 20.63 20.06 19.97

FS Journaling to Writeback 20.20 20.51 18.93 20.14

Concurrency=shell 17.42 19.17 19.17 18.76

Table 7.3: Times of the steps of tweaking Ubuntu 7.10 beta

minimal [s] maximal [s] mean [s]

Starting Point 19.91 22.15 20.91

Deactivate Services 19.97 20.64 20.33

FS Journaling to Writeback 18.93 20.51 19.95

Concurrency=shell 17.42 19.17 18.63

Table 7.4: Minimal, maximal and mean times for the steps of tweaking Ubuntu 7.10 beta

- 65 -

Figure 7.1: Times of the steps of tweaking Ubuntu 7.10 beta

Starting Point Deactivate Services FS Journaling to Writeback Concurrency=shell

0

5

10

15

20

25

minimal maximal mean

se
co

nd
s

The complete charts of Bootchart are in the appendix E.

7.4 Discussion

The result is disillusioning, the time can be reduced to 19 seconds only plus the boot time

of the firmware. It is still to much for a consumer device, which should be used for a short

time several times a day. The effort results in three seconds time reduction only. The last

step, with the least effort to enable the parallel execution makes 50 percent of the time

advantage, which is one and a half second. If it works fine, it can be used without

hesitation. The remove of not needed services makes less than a second and the change

of the journaling method, too.

But why could the boot time of Ubuntu 7.04 Ultimate be reduced that extremely, described

in [THE07]? That is easy to explain. Ubuntu Ultimate installs a lot of additional software by

default. Also there are heavy weights like apache, mysql, samba and others. Deactivating

this services brings a lot of time. Besides Ubuntu 7.10 is more optimized than the version

7.04 (see boot times in chapter 4.4), therefore there is less potential for optimization.

Let us take a look at the boot chart of the tweaked Ubuntu 7.10 boot process (see boot

chart above). At the beginning it takes a long time, about 3 seconds, to load the driver

modules with modprobe. Maybe, some driver modules are not necessary for the system

and can be removed. More than one second of time speedup is not achievable.

Alternatively there exists an experimental implementation of loading kernel modules in

parallel for a CE device [WOO07]. This brings noticeable an advantage. Sometimes, it can

need more time, because the management is more expensive. The big disadvantage is,

that all implemented drivers up to now, has to be adjusted, so that an implementation for

- 66 -

Figure 7.2: Abstract of the boot chart of the tweaked Ubuntu 7.10 beta with

TRACF4GB

most systems is a distant prospect. The next optimization step could be to execute

hwclock in parallel. This works fine in openSUSE 10.3, but it is not trivial, because the

executed software at boot time can come into trouble during the init phase, when the clock

does change. The advantage of time improvement is about a half seconds.

When we add all optimizations discussed together and subtracts them from the measured

time, a boot time of about ten seconds plus the time for boot up the firmware is far away.

Another way is to reduce the amount of services extremely and use small-sized libraries

like uclib, but that would reduce the usability of the system and the compatibility to other

software.

In the next chapter, a solution is examined, which does not follow the standard boot

process scheme.

During these measurements presumption comes, that the spread of the values measured

is bigger when using the flash memory TRACF4GB as mass storage as using a hard disk

like SEA3.5SATA500GB. Thereupon another experiment is done (see chapter 6.3).

- 67 -

8 Alternative to the boot process

8.1 Boot process abstract

Let us take a close look inside the boot process. After the computer is powered on, the

CPU and its register are getting to an well-defined state. At the end of the boot process the

computer is ready to use. Daemons and services are started and the user can log in,

programs can be loaded and used respectively.

The general user is not interested in what is done between power on and log in, as long as

it is done fast and accurate.

Where is the problem with the current computers? Many parts of the currents computer

are volatile, i. e. after power off the prior state gets lost.

How can a personal computer get into the target state? The possibilities are listed in table

8.1.

Possibilities Description

Power on and boot up General boot up (confer chapter 2.1)

Power on and restore state After powered on, initialize the CPU, RAM, controller of the

non-volatile memory and load an image of a ready to use

state from a non-volatile memory into the main memory

like Suspend-To-Disk.

Table 8.1: Possibilities to get to a Ready-To-Use-State

But why is Suspend-to-RAM not listed? Suspend-To-RAM is not listed, because it does not

pass the initial condition. The computer is not really powered off, the RAM still draws

power.

- 68 -

Figure 8.1: Illustration of an abstract boot process

Black Process

. . .

Off to
Power On

Ready for
Use

as fast as possible

Since the 1990s non-volatile Magneto resistive Random Access Memory (MRAM) is

available for main memory. NEC presented MRAM in the year 2007 with an operation

speed of 250 Mhz and it is compatible with SRAM. [NEC07]

Besides MRAM, there are a lot of other technologies of non-volatile main memory under

way, e. g. SPRAM (Spin transfer torque RAM), FeRAM (Ferroelectric RAM), PRAM

(Phase-change RAM), SONOS (Semiconductor-Oxide-Nitride-Oxide-Semiconductor),

RRAM (Resistive RAM) and NRAM (Nano-RAM). If one of this technologies is ready for

mainstream, Suspend-To-RAM would be another alternative solution.

Today, Suspend-to-RAM does not work on each computer system. These problems are

both on Windows and Linux operating systems.

8.2 Suspend-to-Disk versus Power on and restore state

Suspend-to-Disk is nearly that, what we need, i. e. to read an image of a ready to use

state. What is Suspend-to-Disk exactly?

After the computer is booted up, the user has the possibility to write an image of the

current state to the mass storage and turn it off. After the next power on and loading the

kernel the image will be loaded from the mass storage and the last ready to use state will

be recovered instead of a normal boot up. After that, the user can continue the work at the

point where the Suspend-to-Disk was initiated off.

What is the different between Suspend-to-Disk and power on followed by the restore

state?

Instead that the user has to initiate the process of making an image over and over again,

an image of the ready to use state of the graphical login will be made automatically. This

image is loaded by the next boot up and the state of the graphical login will be recovered.

When the image is not generated every time the system can get into an inconsistent state,

e. g. a new update for a program is installed, which is included in the image. For such a

case the image has to be remade. This process must be organized. Currently no

administrative structure exists.

But by now, it can be analyzed, if there is any advantage of time compared with the default

boot process. For this analysis the functions of Suspend-to-Disk are enough.

8.3 Suspend-to-Disk and Linux

By now three implementations of Suspend-to-Disk for Linux exists. The beginning of

Suspend-to-Disk and Linux was the project swsusp from Mr. Rafael Wysocki.

Because the interests of the developers differed extremely two new project have emerged.

For the future it is intended that the distinct projects will come together.

The table F.1 in the appendix chapter F.1 shows the features of the several

implementations of Suspend-to-Disk.

- 69 -

The choice of the used variant of Suspend-to-Disk goes to TuxOnIce (in the past named

Suspend2). It has a couple of advantages compared to the others. The most substantial

argument for TuxOnIce is, that it works independent of an implementation of ACPI in the

firmware like a PC-BIOS. All necessary functions exist in the implementation of TuxOnIce.

This is very important because in the majority of cases the ACPI tables do not work

correctly with Linux. The next positive point is, that a reduced image can be stored, when

the capacity of the mass storage is not enough for a full image. Besides there is the

possibility to compress the image. This can reduce the write and read times. Also the

image can be stored on a swap partition or in a file.

8.3.1 TuxOnIce

8.3.1.1 Installation of TuxOnIce

The operating system Ubuntu 7.10 is used on the system ATH64X2_2.0 and

SEA3.5SATA500GB as mass storage.

Patch and compile

After the default installation of Ubuntu 7.10, the packages of the linux-source, kernel-

package and build-essential have to be installed.

sudo apt-get install linux-source kernel-package \
build-essential

The kernel patch for TuxOnIce can be downloaded from [TOIa]. If there is a special patch

for Ubuntu, it can be used, otherwise the patch has to be adjusted (see below in section

Adjust the TuxOnIce patch).

Copy the patch in the source directory /usr/src/ and try if the patch works.

bunzip2 -c /usr/src/tuxonice_rc3.0.patch.bz2 \
 | sudo patch -p1 --dry-run

When no error is reported the patch can be used.

bunzip2 -c /usr/src/tuxonice_rc3.0.patch.bz2 | sudo patch -p1

Then copy the config file of the old configuration to the kernel source.

Change into the directory of the kernel source and execute the following command:

sudo cp /boot/config-<kernelversion> .config

- 70 -

With Ubuntu there is one specialty. In the default config file for the kernel,

CONFIG_DEBUG_INFO is enabled. For disable this, change CONFIG_DEBUG_INFO=y to
CONFIG_DEBUG_INFO=n.

Without this change the initrd would increas enormously from 7 MiB to 48 MiB.

Now, the kernel can be compiled and the packages created. Maybe some settings has to

be adjusted. Use the submitted values for this.

sudo make-kpkg --initrd --append-to-version -with_toi \
--revision 2.6.22-14.46 binary

After a couple of minutes up to one hour or more the kernel packages are created.

Install the package, which begins with linux-image. Over the graphical user interface one

double click is enough to open the package with the program gdebi-gtk.

After the installation the new kernel is in the /boot directory and the grub boot loader is

updated automatically.

By now, the necessary scripts for the hibernation of TuxOnIce are missing. These can be

downloaded from [TOIa]. After unpacking the downloaded file, the scripts can be installed

with executing the install.sh with root rights.

Adjust the TuxOnIce patch

First, change into the directory of the source code and execute a dry run of the original

patch.

cd /usr/src/linux-source-2.6.22

bunzip2 -c /usr/src/tuxonice_rc3.0.patch.bz2 \
| sudo patch -p1 --dry-run

If there is an error the patch has to be adjusted.

Copy the source to another directory like linux-source-2.6.22_copy, change into it

and execute the patch:

bunzip2 -c /usr/src/tuxonice_rc3.0.patch.bz2 | sudo patch -p1

After that, all parts with an error output are not patched and must be adjusted manually.

The reason for most of the errors is, that the patch can not be applied because some of

the lines have moved.

- 71 -

Having patched the critical areas manually, a new patch file can be generated. Therefore

use the following command:

sudo diff-u -r -N linux-source-2.6.22/ \
linux-source-2.6.22_copy/ > my_tuxonice_rc3.0.patch

Then compress the patch with bzip2:

sudo bzip2 -k -c my_tuxonice_rc3.0.patch

At the end, it should be checked whether the new patch works.

Change to the directory of the linux-source with

cd /usr/src/linux-source-2.6.22

execute and try to run with the new patch:

bunzip2 -c /usr/src/my_tuxonice_rc3.0.patch.bz2 \
| sudo patch -p1 --dry-run

If there is no error any more the new patch can be used.

bunzip2 -c /usr/src/my_tuxonice_rc3.0.patch.bz2 \
| sudo patch -p1

Using a swap partition for the hibernation image

For the following command line instructions it is necessary to have root rights. Therefore

use e. g.

sudo -i

Tell TuxOnIce where the swap partition is to find with the command:

echo swap:/dev/<swappart> > /sys/power/tuxonice/resume

Insert for <swappart> the name of the used swap partition.

Then put this information in the file of the boot loader also. For GRUB it is the file

/boot/grub/menu.lst . After the modification it looks like:

title Ubuntu 7.10, kernel 2.6.22.14-with-toi
root (hd0,0)
kernel /boot/vmlinuz-2.6.22.14-with-toi
root=UUID=b317b889-b8e3-4aa6-95a6-c1dcd38e1387
resume=swap:/dev/hda2 ro quiet splash
initrd /boot/initrd.img-2.6.22.14-with-toi

- 72 -

Using a file for the hibernation image

For the following command line instructions it is necessary to have root rights. Therefore

use e. g.

sudo -i

Then create a file with the content TuxOnIce.

echo "TuxOnIce" > /hibernation-file

Thereafter append the file with zeros to the needed size (e. g. 500 MiB)

dd if=/dev/zero bs=1M count=500 >> /hibernation-file

Tell TuxOnIce which file it has to use for the image:

echo /hibernation-file >/sys/power/tuxonice/file/target

Check the state of TuxOnIce with:

dmesg | tail -1

The output should be

TuxOnIce: Hibernating enabled.

Now get the parameters for the kernel option resume with:

cat /sys/power/tuxonice/resume

The output should be like:

file:/dev/hdc1:0xf8020

Then put the output of the last cat in the boot command line in the file of the boot loader.

For GRUB it is the file /boot/grub/menu.lst. After the modification it looks like:

title Ubuntu 7.10, kernel 2.6.22.14-with-toi
root (hd0,0)
kernel /boot/vmlinuz-2.6.22.14-with-toi
root=UUID=b317b889-b8e3-4aa6-95a6-c1dcd38e1387
resume=file:/dev/hdc1:0xf8020 ro quiet splash
initrd /boot/initrd.img-2.6.22.14-with-toi
quiet

Apply the hibernate script /etc/hibernate/suspend2.conf with adding the line

- 73 -

procsetting file/target /hibernation-file

and uncomment the FilewriterLocation line.

At last the initramfs has to be modified (instructions for Ubuntu 7.10). For this move to the

directory /root with the command

cd /root

make a new directory named tmp_tuxonice and change into it:

mkdir tmp_tuxonice
cd tmp_tuxonice

After that the original initramfs file of the kernel with TuxOnIce can be unpacked into the

new directory with:

cat /boot/initrd.img-<your-version> | gzip -d | cpio -i

Then modify the file /skripts/local. Add the line

echo 1 > /sys/power/tuxonice/do_resume

before the root file system is mounted.

Generate a initramfs file of the modified data with

find | cpio -H newc -o | gzip > ../initrd.img-<your-version>

and change the name of the old initramfs file:

mv /boot/initrd.img-<your-version> \
/boot/initrd.img-<your-version>.old

At last, copy the new initramfs file into the /boot directory and restart the system.

cp ../initrd.img-<your-version> \
/boot/initrd.img-<your-version>

8.3.1.2 Configuration and Measurement methods

TuxOneIce version 3.0rc3 is installed as described in chapter 8.3.1.1 and the partitioning

of the hard disk can be seen in table 8.2. A file is used as storage for the image. This file is

placed near to the beginning of the hard disk for getting the maximal throughput of the

hard disk.

- 74 -

For the measurement a stop watch is used because all the other methods do not work by

resuming a state from an image. The starting point is when typing the return key in the

boot loader Grub, that starts the Linux boot process. When the state of the loaded image is

shown, the end point is reached. To get the state of the memory usage, the tool free is

used and to get more information about the hibernate process the

/sys/power/tuxonice/debug_info is to read out. For dropping the caches the

command

echo 3 > /proc/sys/vm/drop_caches

is used. The caches can be also dropped by TuxOnIce with setting the option

ImageSizeLimit in the config file of TuxOnIce to nocache, but then there is no chance

to get the memory usage with the tool free.

Range (GiB) Description of data File system Partition

0 - 24 Ubuntu 7.10 and TuxOnIce file ext3 /dev/sda1

+3 swap swap /dev/sda2

Table 8.2: Partition table of SEA3.5SATA500GB for TuxOnIce

8.3.1.3 Results

Desktop

environment

without dropped

caches

Desktop

environment with

dropped caches

GDM without

dropped caches

GDM with

dropped caches

Used memory [MiB] 304.34 202.79 134.89 62.84

Free memory [MiB] 706.71 808.42 876.32 948.36

Buffers [MiB] 13.25 13.09 5.74 0.21

Cached [MiB] 162.23 50.74 81.38 16.27

Image size

uncompressed [MiB]
289.72 166.77 114.78 46.94

Image size compressed

[MiB]
150.39 78.54 62.89 21.17

Compression in percent 53 52 45 54

Write speed [MiB/s] 28 30 6 25

Read speed [MiB/s] 40 41 33 32

Time for read image [s] 7.24 4.07 3.48 1.47

Time until TuxOnIce

starts [s]
6.06 6.06 6.06 6.06

Time [s] 18.04 15.00 14.91 12.52

Table 8.3: Values of the TuxOnIce boot on ATH64X2_2.0

- 75 -

A description of the Table “TuxOnIce boot” is in the appendix chapter F.2.

8.3.1.4 Discussion

The results of the measurements do not completely satisfy. Especially the result of loading

an image with a desktop environment is disappointing, which needs all in all 18 seconds

for reconstructing the state of a system with 304 MiB main memory usage. The reason of

the bad result is the low I/O throughput. The problem is known and in the version 3.0-rc6

of TuxOnIce the code of block_io has got a rework. The unstable version of TuxOnIce 3.0-

rc6 (date 27 February 2008) available from [GIT] does not run on the test system so that it

could not be tested. The principle author of TuxOneIce Nigel Cunningham tells, that the I/O

throughput should be close to the output of hdparm -t. For the used hard disk

SEA3.5SATA500GB on the test system the output of hdparm -t is 77 MiB per second.

This is approximately the value of the h2benchw at the beginning of the benchmark. The

all in all time of the last example would reduce with the full I/O throughput from 18 seconds

to 12 seconds.

At the moment, six seconds of the kernel uptime passes until TuxOnIce starts. This can be

improved by modifying the scripts of the initramfs, so that TuxOnIce is started by a short

separated branch, which only gets the controller of the hard disk in work, when an image

exists. Therewith the time, which passes until TuxOnIce starts, should be shrink from 7 to

2 seconds (included the time of one second for loading the initramfs image into the

memory by the boot loader).

The principle author of swsusp and uswsusp Rafael Wysocki currently works on a

implementation, that should allow to hibernate one kernel and resume from another. Nigel

Cunningham has figured out a way to transfer information from one kernel to another, but

at the moment, there exists no time frame for the complete implementation of this feature.

[TOIc]

With such a feature a tiny kernel could be integrated in the LinuxBios or (U)EFI and

resume an hibernation image of the default kernel of any Linux distribution. Therefore the

time which passes until TuxOnIce starts could be reduced to some milliseconds.

Although the possible I/O throughput of reading the hibernate image from hard disk is not

reached and no of the other optimizations are implemented, the loading of an images of a

ready to use state of the display manager GDM without dropping the caches needed

approximately 15 seconds. It is 12 seconds faster (more than 40 percent) than the normal

boot process which needed 28 seconds (confer chapter 6.1.3). A comparison between

reaching the state of the desktop environment with an hibernation image and with the

normal boot process, the advantage of loading an image would be even more larger. By

dropping the caches before writing the image, the time to get the state of the desktop

environment back is approximately the same as to resume from the state of the GDM

- 76 -

without dropping the caches. The caches can be deleted unrestrictedly before writing a

state of the desktop environment, because it influences the work of the user only

marginally. When the state of the display manager should be saved to an image, the

caches should not be dropped, otherwise the loading of the desktop environment after the

login does need noticeably more time.

By now, the question comes up, would it makes sense to develop a management system,

which controls, that only an old image can be loaded when there are no changes on the

data, which is saved to the image (confer chapter 8.2). Currently TuxOnIce supports only a

kiosk mode [TOId]. In this mode, the same image will be loaded and the file system is

mounted as read only, so that it never gets into an inconsistent state. With write access

rights to the mass storage the management would be very difficult to guarantee always a

consistent state. When the speed of writing an image to the mass storage is close to the

value of hdparm -t, the image can be written to the mass storage in less than five

seconds, so that there is no disadvantage compared to shutdown a system on the

traditional way. An additional time to shutdown the system is not needed.

- 77 -

9 Evaluation of embedded systems (IA32)
In this chapter, the normal boot process and the alternative solution to load an image of a

ready to use state is evaluated on embedded systems with IA32 architecture.

Intel intents to release the new platform Menlow for Ultra Mobile Personal Computer

(UMPC) on the market still this year (2008) [TEC08]. Such a system will have at least the

computing power of the system ATH64_1.8. The platform Menlow will be used in many

embedded systems in all probability, because the used CPU Silverthorne needs only 2

watt power consumption. The first embedded systems based on the platform Menlow were

presented at the trade fair Embedded Word in Nuremburg [MCT08]. Via wants to launch a

new CPU (Isaiah) in spring 2008, which is two times more powerful than the C7 and has a

typical power consumption of less than 5 watt [HEN08]. The Isaiah should also have at

minimum the computing power of the system ATH64_1.8. On the bottom of the scale of

computing power for IA32 embedded systems there are the VIA Eden ESP with 300 MHz

up to 1000 MHz and the AMD Geode LX with 433 MHz up to 600 MHz. Systems with such

a CPU are mostly also limited in the data transfer rate of the I/O-interfaces e. g. IDE, SATA

and USB interfaces.

9.1 Traditional boot process

9.1.1 Configuration

For the first analysis of the embedded systems the system EPIA-ML (see appendix A.3)

and GEODE-LX (see appendix A.6) are available. The system GEODE-LX could not be

tested because the driver for the integrated graphical card has some severe bugs [BUGa]

[BUGb] so that the distribution Ubuntu 7.10 could not be installed with a X-Server.

As mass storage the flash memory TRACF4GB and the hard disk SEA3.5SATA500GB are

used. The Linux distribution Ubuntu 7.10 is installed with all updates, which are available

on the date of testing. Typically such a system with low computing power has a light weight

Linux installed with an light weight desktop environment. A comparison of several desktop

environments is described in [LMA08]. The distribution Ubuntu 7.10 is used to get the

possibility to compare the results with the others of this work.

9.1.2 Measurement methods

Fbtt is used as described in chapter 3.1.3 and in another run a boot chart is generated,

confer with chapter 3.1.2.

- 78 -

9.1.3 Results

Three runs are done with Fbtt for each configuration.

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 68.08 67.75 68.09 67.97

TRACF4GB 63.45 62.85 63.39 63.23

Table 9.1: Boot times of Ubuntu 7.10 beta (EPIA-ML) with several mass storages

9.1.4 Discussion

The time for boot up Ubuntu 7.10 on an EPIAL-ML with the hard disk SEA3.5SATA500GB

as mass storage needs with 68 seconds more than the twice the time of system

ATH64X2_2.0 with SEA3.5SATA500GB, which needs only 28 seconds (confer chapter

- 79 -

Figure 9.1: Abstract of the boot chart of Ubuntu 7.10 beta on System EPIA-ML with SEA3.5SATA500GB

Figure 9.2: Abstract of the boot chart of Ubuntu 7.10 beta on System EPIA-ML with TRACF4GB

6.1.3). The time gap between the usage of the compact flash memory TRACF4GB and the

hard disk is on the EPIA-ML noticeable with four seconds.

The chart of Bootchart shows, that the CPU of the EPIA-ML is fully loaded the most time.

The only way to reduce the boot time is to decrease the workload e. g. by deleting

services. But more than the double of the time, which is gained on the system

ATH64X2_2.0 (confer chapter 7.3) is not possible. A reduction of a few seconds by a boot

time of more than 60 seconds is nowhere near enough. An alternative can be to use a

special Distribution like Ubuntu mobile [UBM07], which is designed for systems with low

computing power and few main memory. It was planed, that the first stable version should

be available in October 2007, but the release date was shifted to the April 2008.

9.2 Boot up by loading image

9.2.1 Configuration

The system EPIA-ML and the hard disk SEA3.5SATA500GB is used as mass storage. A

measurement series with the system GEODE-LX could not be done (confer chapter 9.1.1).

The distribution Ubuntu 7.10 and the hibernate extension TuxOnIce are installed and used

as described in chapter 8.3.1.1.

9.2.2 Measurement methods

The measurement is done with a stop watch and the analysis is done as described in

chapter.

- 80 -

9.2.3 Results

Desktop

environment

without dropped

caches

Desktop

environment with

dropped caches

GDM without

dropped caches

GDM with

dropped caches

Used memory [MiB] 319.71 188.109 164.25 92.02

Free memory [MiB] 152.19 283.789 307.69 379.88

Buffers [MiB] 9.25 0.58 5.80 0.00

Cached [MiB] 165.08 41.54 81.59 16.53

Image size

uncompressed [MiB]
266.64 140.74 117.16 49.59

Image size compressed

[MiB]
142.98 69.64 64.03 22.35

Compression in percent 46 50 45 54

Write speed [MiB/s] 10 11 10 13

Read speed [MiB/s] 27 28 28 31

Time for read image [s] 9.88 5.03 4.18 1.60

Time until TuxOnIce

starts [s]
13.21 13.21 13.21 13.21

Time [s] 34.70 29.35 28.03 23.99

Table 9.2: Values of the TuxOnIce boot on EPIA-ML

A description of the Table “TuxOnIce boot” is in the appendix chapter F.2.

9.2.4 Discussion

The loading of an images of a ready to use state of the display manager GDM without

dropping the caches needs approximately 28 seconds. It is 40 seconds faster

(approximately 60 percent) than the normal boot process which needs 68 seconds (see

chapter 9.1.3). Therefore the advantage to load an image on a slower system is relatively

larger compared to a system with more computing power like the ATH64X2_2.0. The ratios

between the variants on EPIA-ML correspond to the ones of ATH64X2_2.0 (confer chapter

8.3.1.3). The conclusions of the chapter 8.3.1.4 can be adopted to systems with low

computing power. But the result for the all in all times, by realizing the optimizations as

described in chapter chapter 8.3.1.4, should be marginally longer.

- 81 -

10 Comparison between several

firmwares

10.1 PC-BIOS

10.1.1 Configuration and measurement method

Two systems have to be evaluated. First the ATH64X2_2.0 and second the EPIA-ML.

The time, which is needed by the PC-BIOS depends on on the settings. Some settings do

not really make a disadvantage in time, in contrast other need a lot of time. [PAR06c]

The largest consumers of time have been disabled when they are not needed (see table

10.1 and 10.2).

Feature Setting

Cool & Quit Enabled

Netboot Disabled

RAID enabled Disabled

Onboard Silicon SATA Disabled

Onboard NV SATA Enabled

IDE Channel 0 Disabled

IDE Channel 1 Disabled

SATA First Master Auto

SATA Second Master None

SATA Third Master None

SATA Fourth None

POST Check LAN Cable Disabled

Speech IC Reporter Disabled

Instant Music Disabled

Onboard NV LAN Enabled

Onboard Marvel LAN Disabled

Quick Boot Enabled

Boot Up Floppy Seek Disabled

Full Screen Logo Disabled

Table 10.1: PC-BIOS settings of ATH64X2_2.0

- 82 -

Feature Setting

Quick Boot Enabled

Boot Up Floppy Seek Disabled

Full Screen Logo Disabled

LAN Boot Disabled

Table 10.2: PC-BIOS settings of EPIA-ML

The hard disk SEA3.5SATA500GB and the compact flash card TRACF4GB with SATA-to-

CF-Adapter is used as mass storage. The EPIA-ML does not have any SATA interface, so

that for the hard disk and the compact flash card an additional IDE-to-SATA-Adapter (see

appendix C.2) is used.

The measurements are done with a stop watch. The power on of the system is the starting

point and the prompt of the grub boot loader is the end point of the measurement.

The measurement series with each system and mass storage is composed of a

measurement with plugging the mass storage first to a local and second to a external

power supply. This is done to find out what the influence of the spin up of the hard disk on

the firmware start up is. The compact flash does not have any spin up time, because it has

no moving parts inside. It is used as a reference and serves to exclude other influences.

The external power supply is provided by a 5.25” external storage case.

10.1.2 Results

Three runs are done for each configuration.

ATH64X2_2.0

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 16.21 16.19 16.28 16.23

TRACF4GB 16.01 15.94 15.90 15.95

Table 10.3: Results with using internal power supply (PC-BIOS ATH64X2_2.0)

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 16.33 16.32 16.29 16.31

TRACF4GB 16.06 15.96 16.01 16.01

Table 10.4: Results with using external power supply (PC-BIOS ATH64X2_2.0)

- 83 -

EPIA-ML

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 11.21 11.12 11.28 11.20

TRACF4GB 11.30 11.10 11.18 11.19

Table 10.5: Results with using internal power supply (PC-BIOS EPIA-ML)

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 11.15 11.25 11.10 11.17

TRACF4GB 11.19 11.12 11.22 11.18

Table 10.6: Results with using external power supply (PC-BIOS EPIA-ML)

10.2 LinuxBios

10.2.1 Configuration and measurement method

The system EPIA-ML is used, because there was a ROM image available. An introduction

to generate a LinuxBios image can be looked up in [PAR06].

The hard disk SEA3.5SATA500GB and the compact flash card TRACF4GB is used as

mass storage. Furthermore the adapter are applied as described in chapter 10.1.1.

The measuring is done manually with a stop watch. The power on of the system is the

starting point and the error message “File not Found hda1:/vmlinuz-filo..” of the filo boot

loader, after the identification of the mass storage by the boot loader, is the end point.

The output of the EPIA-ML system with the LinuxBios is done over the serial interface

(COM) and is read out with the tool hyperterminal.

The measurement series is done with using a local and external power supply for the

mass storages as described in chapter 10.1.1.

10.2.2 Results

Three runs are done for each configuration.

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 7.03 6.92 6.96 6.97

TRACF4GB 6.97 6.89 6.98 6.95

Table 10.7: Results with using internal power supply (LinuxBios EPIA-ML)

- 84 -

Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

SEA3.5SATA500GB 6.95 6.89 6.99 6.94

TRACF4GB 6.91 6.95 6.93 6.93

Table 10.8: Results with using external power supply (LinuxBios EPIA-ML)

10.3 EFI

10.3.1 Configuration and measurement method

As system with an EFI a Mac Mini is used. There is no tool available to change the

configuration of EFI on the Mac Mini.

Nevertheless when the EFI module rEFIT 0.10. REFIT, a boot loader for the EFI firmware,

has been added, the time between the boot up of the firmware and the operating system

can be distinguished.

The the measurement starts with power on of the MAC-MINI and ends with the

appearance of the logo of rEFIT. At that point rEFIT is not ready to use. The time is taken

with a stop watch.

The MAC-MINI has been opened and modified for the measurements, therefore the

following tests are possible to realize.

First, the internal DVD drive is cable-connected and a DVD or CD has not been inserted.

Second, the internal DVD drive has been removed. Besides this, the measurements are

done with and without an external power supply for the hard disk. Therefore the hard disk

can be operated on the MAC-MINI with an external power supply (see appendix chapter

D), a SATA-SATA-Adapter is needed (see appendix C.3), because the hard disk is

connected to a SATA-Back-Plane by default and only a normal SATA data cable is not

enough.

- 85 -

10.3.2 Results

Three runs are done for each configuration.

Configuration with Run 1 [s] Run 2 [s] Run 3 [s] Mean [s]

HDD Spin Up, DVD Drive 8.20 8.22 8.21 8.21

HDD Spin Up, without DVD Drive 7.61 7.64 7.64 7.63

HDD on external power supply, DVD

Drive
6.08 6.10 6.03 6.07

HDD on external power supply, without

DVD Drive
5.56 5.61 5.51 5.56

Table 10.9: Result of EFI evaluation

10.4 Discussion

In the case, that the evaluation of several firmwares is done on different systems, the

result can not be compared directly. Currently this is not avoidable, because no system

exists, which is supported by all the three firmwares. Although we can get some interesting

results.

The results of the LinuxBios and PC-BIOS are rather the same compared to these of the

student research project of Daniel Parthey [PAR06]. Also the boot time of the two tested

PC-BIOS (ATH64X2_2.0 and EPIA-ML) differ with more than 30 percent (five seconds).

The reason of this is, that the main board of the ATH64X2_2.0 has more components,

which are initialized by the PC-BIOS. But there is also a difference between the results

above and the ones of [PAR06]. In the student research project [PAR06] the LinuxBios was

handicapped by the spin up of the hard disk with additional four seconds. This can not be

confirmed with the evaluation above. Unfortunately the research of Mr. Parthey does not

make any advice of the used model of the hard disk. A spin up time of a hard disk with

much more than 6 seconds is unusual. Maybe the spindle motor of the hard disk used in

the research [PAR06] has a stealthy fault, that results in longer spin up times.

The LinuxBios of the EPIA-ML saves four seconds (approximately 35 percent) compared

to the PC-BIOS. The EFI of the MAC-MINI needs a similar amount of time like the EPIA-

ML with LinuxBios, when the DVD drive of the MAC-MINI is disconnected and the internal

power supply for the hard disk is used (the systems EPIA-ML and ATH64X2_2.0 are

running always without a DVD drive). The EFI is handicapped by the spin up of the hard

disk. It is approximately two seconds faster with using the external power supply and no

waiting for spin up the hard disk, than with using the internal power supply and spinning up

the hard disk by power on. Without the disadvantage of the spin up, the EFI of the MAC-

MINI is a little bit faster (one and a half second, approximately 20 percent) than the

- 86 -

LinuxBios of the EPIA-ML. Whether the EFI or the LinuxBios is at last the faster one can

not be answered, because the computing power of the both systems are very different.

With a time of seven seconds and less for executing the firmware (EFI and LinuxBios), the

ambition of getting a complex system (with a full-grown Linux operating system included)

in a ready to use state within 15 seconds is close to be realized.

- 87 -

11 Conclusion
In the thesis the boot up time of the Linux operation system is analyzed under different

booting conditions. Along this it is examined which time is spent for each step of the boot

process. Beyond this, the question is evaluated whether the booting times of new Linux

distributions have increased despite new computer systems with more powerful

processors are used.

To compare different boot up times several methods of measuring the boot up time of

computer systems are presented and the accuracy and reliability of the results are shown.

The tool Bootchart is helpful to analyze the boot process of Linux, but it is not qualified to

get out the real boot up time. For this the tool Fbtt as an automatically measurement

method and a stop watch as a manually method can be used. The method with a stop

watch is absolutely without of any influences to the examined system and Fbtt impairs

0.04 seconds at the maximum, which is only 0.2 percent of the total boot time of Linux.

In the next chapter the myth of continuously rising boot up times is busted. Hence the most

popular Linux distributions of the last two years are examined. The latest versions need

the least time for the booting process than all other previous versions of each distribution

in the last two years.

Chapter 5 goes more into the details of the latest distributions and their behavior by using

several hard disks and different number of cores of the CPU. It is shown, that Debian 4

has a good time by using a scrawny System-V-Init process. The distribution of Ubuntu

7.10, which uses Upstart as init system, is fast in booting up, even thought it starts a lot of

processes at boot time. The result of the single and dual core system differs only

marginally. Therefore it can not use the computing power of the second core. In contrast

OpenSUSE 10.3 uses often the second core, but reaches not the time of the test

configuration of an single core system with using Ubuntu 7.10. Additionally openSUSE

10.3 is influenced more by a slower CPU (ATH64_1.8 instead ATH64X2_2.0) than a slower

hard disk (notebook SAM2.5SATA100GB instead of a desktop SEA3.5SATA500GB).

The next research shows the results by using several local mass storages and a network

storage. Expectedly the desktop hard disk SEA3.5SATA500GB is in the mean with 28

seconds faster than the notebook hard disk SAM2.5SATA100GB, which need 34 seconds

at the boot process. A huge difference exists between the professional and low cost

compact flash memory. The TRACF4GB (professional) reaches the best time in booting up

with 21 seconds in the mean. In contrast, the TAKCF4GB (low cost) is significantly the

slowest medium with 61 seconds in the mean. The boot process over a Gigabit Ethernet

network does not result in an advantage in time. The client reaches the time of a system

with SEA3.5SATA500GB as local mass storage only by reading out the data from the

system buffer. The overhead of NFS and the latency of the Ethernet is to high. During the

experiments the sneaking suspicion arises, that the spreading of the measurement values

are larger with the usage of flash memory than with the desktop hard disk

- 88 -

SEA3.5SATA500GB, so that this phenomenon is examined too. The research results in,

that the spreading of the TRACF4GB is really larger as the hard disk SEA3.5SATA500GB.

In chapter 7 Ubuntu 7.10 is tweaked to reduce the boot time. In the publication [THE07]

the boot time of Ubuntu 7.04 Ultimate is reduced from 35 to 15 seconds (measurement

method was Bootchart). The research in this work shows, that the well matched

distribution Ubuntu 7.10 has only a marginally advantage of three seconds.

In the next chapter, a solution is examined, which does not follow the standard boot

process scheme. Instead of rerunning the boot up process again and again, an image of

an ready to use state is loaded. For the research is TuxOnIce used. The loading of an

images of a ready to use state of the display manager GDM without dropping the caches

is 12 seconds faster (more than 40 percent) than the normal boot process which needed

27 seconds. With the suggested optimizations the result can be much better.

In the chapter 9 on the embedded system EPIA-ML with IA32 architecture the traditional

boot process and the boot up with loading an image of a ready to use state is tested. The

computing power of this system is on the bottom of the scale of computing power for IA32

embedded systems. The time for boot up Ubuntu 7.10 on an EPIAL-ML with the hard disk

SEA3.5SATA500GB as mass storage needs with 68 seconds more than twice of the time

of the system ATH64X2_2.0 with SEA3.5SATA500GB, which needs only 28 seconds. To

boot up with an image, the EPIA-ML is not as fast as the ATH64X2_2.0, but the EPIA-ML

saves compared to the normal boot up approximately 60 percent (the ATH64X2_2.0 saves

only 40 percent) of the time.

At last several firmwares are compared. The LinuxBios of the EPIA-ML saves four seconds

(approximately 35 percent) compared to the PC-BIOS. The EFI of the MAC-MINI is a little

bit faster (one and a half second, approximately 20 percent) than the LinuxBios of the

EPIA-ML. Whether the EFI or the LinuxBios is at last the faster one can not be answered,

because the computing power of the both systems are very different.

The result of this thesis is, that in the last two years it was done a lot to accelerate the

normal boot up process of Linux and that by now only marginally optimization potential is

left. Therefore it is very difficult, possibly even impossible, to realize a boot up time of 15

seconds included the time for executing the firmware. To load an image of a ready to use

state from a non-volatile storage into the main memory and activate it, a complex system

based on a full-grown Linux operating system, which was powered off before, could be

ready to use in 15 seconds (a (U)EFI or a LinuxBios as firmware is adopted). Such a

system can be realized in the near future.

- 89 -

12 Outlook
The matter of the firmware has to be evaluated again, when more systems as the x86-Mac

computer are on the market, which have an (U)EFI as firmware. In all probability the times

for booting up the (U)EFI will differ between the manufacturers like the results of

measurement of the PC-BIOS (confer chapter 10.1.2). The deployment of the LinuxBios

goes continuously forward, so that it should be evaluated too. Especially desirable is a

comparison of an (U)EFI and LinuxBios on the same system. Today the LinuxBios starts

up in a few seconds, but more systems has to be supported by the LinuxBios and the

process of generating a LinuxBios for a system has to get more simple.

The results of getting a system in a ready to use state by the usage of TuxOnIce looks

promising and a lot of potential of optimizations exist (confer chapter 8.3.1.4). The variant

to load an image of a ready to use state with the aid of a tiny kernel is the one with the

most potential. Besides, new measurement and analysis methods has to be find out,

because the current ones do not work when the system is started with loading an image.

The usage of an LinuxBios or an (U)EFI as firmware in combination with loading an image

and realizing some of the possible optimizations described in chapter 8.3.1.4, should let

the all in all boot up time of an complex system (included a full-grown Linux distribution like

Ubuntu) diminish to less than 15 seconds in the near future.

Although the loading of an image is significantly better than the normal boot up process,

the normal boot up process may not be go disregarded, because a normal boot up can be

avoided not in all cases, e. g. kernel update or after changing a not hot-plug-able device.

In the further future completely other possibilities will exist when non-volatile main memory

is used (confer chapter 8.1). Then a system can be realized, which is ready to use in one

second, although the system was disconnected from the power supply before. In the next

time no such a system will come on the market, because up to now no manufacturer has

announced such a product for the mainstream sector.

- 90 -

A Test systems
The data of “Processor”, “Chipset & Memory”, “System and Memory SPD” is read out with

the software CPU-Z version 1.44 [CPUZ]. The information about the graphic interface and

additional components are added manually.

The systems does not have any DVD Drive, when not otherwise described.

A.1 System ATH64_1.8

Processor(s)
Number of processors 1

Number of cores 1 per processor

Number of threads 1 per processor

Name AMD Athlon 64 3000+

Code Name Winchester

Specification AMD Athlon(tm) 64 Processor 3000+

Package Socket 939

Family/Model/Stepping F.F.0

Extended Family/Model F.1F

Brand ID 4

Core Stepping DH8-D0

Technology 90 nm

Core Speed 1809.4 MHz

Multiplier x Bus speed 9.0 x 201.0 MHz

HT Link speed 1005.2 MHz

Stock frequency 1800 MHz

Instruction sets MMX (+), 3DNow! (+), SSE, SSE2, x86-64

L1 Data cache (per processor) 64 KBytes, 2-way set associative, 64-byte line size

L1 Instruction cache (per processor) 64 KBytes, 2-way set associative, 64-byte line size

L2 cache (per processor) 512 KBytes, 16-way set associative, 64-byte line size

Chipset & Memory
Northbridge NVIDIA nForce4 rev. A3

Southbridge NVIDIA nForce4 MCP rev. A3

Graphic Interface PCI-Express

PCI-E Link Width x16

PCI-E Max Link Width x16

Memory Type DDR

Memory Size 512 MBytes

Memory Frequency 201.0 MHz (CPU/9)

CAS# Latency (tCL) 2.5 clocks

RAS# to CAS# (tRCD) 3 clocks

RAS# Precharge (tRP) 3 clocks

Cycle Time (tRAS) 8 clocks

Bank Cycle Time (tRC) 11 clocks

DRAM Idle Timer 16 clocks

Command Rate (CR) 1T

- 91 -

System
System Manufacturer System manufacturer

System Name System name

System S/N 123456789000

Mainboard Vendor ASUSTeK Computer INC.

Mainboard Model A8N-SLI DELUXE

BIOS Vendor Phoenix Technologies, LTD

BIOS Version ASUS A8N-SLI DELUXE ACPI BIOS Revision 1016

BIOS Date 12/01/2005

Memory SPD
Module 1 DDR, PC3200 (200 MHz), 512 MBytes, Corsair

Graphics Card
Model Sapphire ATI Radeon X600 pro 128 MB

Table A.1: Technical data of the system ATH64_1.8

A.2 System ATH64X2_2.0

Processor(s)
Number of processors 1

Number of cores 2 per processor

Number of threads 2 per processor

Name AMD Athlon 64 X2 3800+

Code Name Manchester

Specification AMD Athlon(tm) 64 X2 Dual Core Processor 3800+

Package Socket 939

Family/Model/Stepping F.B.1

Extended Family/Model F.2B

Brand ID 5

Core Stepping BH-E4

Technology 90 nm

Core Speed 2010.5 MHz

Multiplier x Bus speed 10.0 x 201.0 MHz

HT Link speed 1005.2 MHz

Stock frequency 2000 MHz

Instruction sets MMX (+), 3DNow! (+), SSE, SSE2, SSE3, x86-64

L1 Data cache (per processor) 2 x 64 KBytes, 2-way set associative, 64-byte line size

L1 Instruction cache (per processor) 2 x 64 KBytes, 2-way set associative, 64-byte line size

L2 cache (per processor) 2 x 512 KBytes, 16-way set associative, 64-byte line size

Chipset & Memory
Northbridge NVIDIA nForce4 rev. A3

Southbridge NVIDIA nForce4 MCP rev. A3

Graphic Interface PCI-Express

PCI-E Link Width x16

PCI-E Max Link Width x16

Memory Type DDR

Memory Size 1024 MBytes

Memory Frequency 201.0 MHz (CPU/10)

- 92 -

CAS# Latency (tCL) 2.5 clocks

RAS# to CAS# (tRCD) 3 clocks

RAS# Precharge (tRP) 3 clocks

Cycle Time (tRAS) 8 clocks

Bank Cycle Time (tRC) 11 clocks

DRAM Idle Timer 16 clocks

Command Rate (CR) 2T

System
System Manufacturer System manufacturer

System Name System name

System S/N 123456789000

Mainboard Vendor ASUSTeK Computer INC.

Mainboard Model A8N-SLI DELUXE

BIOS Vendor Phoenix Technologies, LTD

BIOS Version ASUS A8N-SLI DELUXE ACPI BIOS Revision 1016

BIOS Date 12/01/2005

Memory SPD
Module 1 DDR, PC3200 (200 MHz), 512 MBytes, Corsair

Module 2 DDR, PC3200 (200 MHz), 512 MBytes, Corsairhttp://www.opensuse.org/

Graphics Card
Model MSI nVidia Geforce 7600 GT

Table A.2: Technical data of the system ATH64X2_2.0

A.3 System EPIA-ML

Processor(s)
Number of processors 1

Number of cores 1 per processor

Number of threads 1 per processor

Name VIA C3

Code Name Nehemiah

Specification VIA Nehemiah

Package Socket 370 CPGA

Family/Model/Stepping 6.9.8

Extended Family/Model 0.0

Core Stepping C5P

Technology 0.13 um

Core Speed 666.6 MHz

Multiplier x Bus speed 5.0 x 133.3 MHz

Stock frequency 666 MHz

Instruction sets MMX, SSE

L1 Data cache (per processor) 64 KBytes, 4-way set associative, 32-byte line size

L1 Instruction cache (per processor) 64 KBytes, 4-way set associative, 32-byte line size

L2 cache (per processor) 64 KBytes, 16-way set associative, 32-byte line size

Number of processors 1

Number of cores 1 per processor

Chipset & Memory

- 93 -

Northbridge VIA CLE266 (VT8623) rev. 00

Southbridge VIA VT8235 rev. 00

Memory Type

Memory Size 512 MBytes

Northbridge VIA CLE266 (VT8623) rev. 00

Southbridge VIA VT8235 rev. 00

System
System Manufacturer VIA Technologies, Inc.

System Name VT8623-8235

System S/N

Mainboard Vendor

Mainboard Model EPIA-ML

BIOS Vendor Award Software International, Inc.

BIOS Version 6.00 PG

BIOS Date 07/12/2004

Memory SPD
Module 1 DDR, PC3200 (200 MHz), 512 MBytes, unknown brand

Graphics Card
Model onboard

Table A.3: Technical data of the system EPIA-ML

A.4 System CORE2DUO_2.16

Processor(s)
Number of processors 1

Number of cores 2 per processor

Number of threads 2 per processor

Name Intel Mobile Core 2 Duo T7400

Code Name Merom

Specification Intel(R) Core(TM)2 CPU T7400 @ 2.16GHz

Package Socket 479 mPGA

Family/Model/Stepping 6.F.6

Extended Family/Model 6.F

Core Stepping B2

Technology 65 nm

Core Speed 2161.4 MHz

Multiplier x Bus speed 13.0 x 166.3 MHz

Rated Bus speed 665.0 MHz

Stock frequency 2166 MHz

Instruction sets MMX, SSE, SSE2, SSE3, SSSE3, EM64T

L1 Data cache (per processor) 2 x 32 KBytes, 8-way set associative, 64-byte line size

L1 Instruction cache (per processor) 2 x 32 KBytes, 8-way set associative, 64-byte line size

L2 cache (per processor) 4096 KBytes, 16-way set associative, 64-byte line size

Chipset & Memory
Northbridge Intel i945PM rev. 03

Southbridge Intel 82801GHM (ICH7-M/U) rev. B0

Graphic Interface PCI-Express

- 94 -

PCI-E Link Width x16

PCI-E Max Link Width x16

Memory Type DDR2

Memory Size 2048 MBytes

Memory Frequency 332.5 MHz (1:2)

CAS# Latency (tCL) 4.0 clocks

RAS# to CAS# (tRCD) 4 clocks

RAS# Precharge (tRP) 4 clocks

Cycle Time (tRAS) 15 clocks

Bank Cycle Time (tRC) 20 clocks

Northbridge Intel i945PM rev. 03

Southbridge Intel 82801GHM (ICH7-M/U) rev. B0

System
System Manufacturer COMPAL

System Name HEL80C

System S/N 2056773501499

Mainboard Vendor COMPAL

Mainboard Model HEL8X

BIOS Vendor COMPAL

BIOS Version 122B

BIOS Date 07/09/2007

Memory SPD
Module 1 DDR2, PC2-5300 (333 MHz), 1024 MBytes, MCI Computer

Module 2 DDR2, PC2-5300 (333 MHz), 1024 MBytes, MCI Computer

Graphics Card
Model nVidia GeForce Go 7600

Table A.4: Technical data of the system CORE2DUO_2.16

A.5 System P4_3.2

Processor(s)
Number of processors 1

Number of cores 1 per processor

Number of threads 2 per processor

Name Intel Pentium 4

Code Name Prescott

Specification Intel(R) Pentium(R) 4 CPU 3.20GHz

Package

Family/Model/Stepping F.4.1

Extended Family/Model F.4

Core Stepping E0

Technology 90 nm

Core Speed 3192.1 MHz

Instruction sets MMX, SSE, SSE2, SSE3

L1 Data cache (per processor) 16 KBytes, 8-way set associative, 64-byte line size

Trace cache (per processor) 12 Kuops, 8-way set associative

L2 cache (per processor) 1024 KBytes, 8-way set associative, 64-byte line size

- 95 -

Chipset & Memory
Memory Type

Memory Size 2048 MBytes

System
System Manufacturer MEDIONPC

System Name MS-7046

System S/N

Mainboard Vendor MICRO-STAR INTERNATIONAL CO., LTD

Mainboard Model MS-7046

BIOS Vendor Phoenix Technologies, LTD

BIOS Version 6.00 PG

BIOS Date 01/10/2005

Memory SPD

Graphics Card
Model ATI Radeon X600

Table A.5: Technical data of the system P4_3.2

A.6 System GEODE-LX

Processor(s)
Number of processors 1

Number of cores 1 per processor

Number of threads 1 per processor

Name AMD Geode LX

Code Name Castle

Specification Geode(TM) Integrated Processor by AMD PCS

Package Socket 481 BGU

Family/Model/Stepping 5.A.2

Extended Family/Model 5.A

Core Stepping

Technology 0.13 um

Core Speed 498.0 MHz

Multiplier x Bus speed 15.0 x 33.2 MHz

Rated Bus speed 66.4 MHz

Instruction sets MMX (+), 3DNow! (+)

L1 Data cache (per processor) 64 KBytes, 16-way set associative, 32-byte line size

L1 Instruction cache (per processor) 64 KBytes, 16-way set associative, 32-byte line size

L2 cache (per processor) 128 KBytes, 4-way set associative, 32-byte line size

Number of processors 1

Chipset & Memory
Southbridge AMD ID2090 rev. 02

Memory Type

Memory Size 480 MBytes

System

- 96 -

System Manufacturer

System Name

System S/N

Mainboard Vendor

Mainboard Model AMD-LX800

BIOS Vendor Phoenix Technologies, LTD

BIOS Version 6.00 PG

BIOS Date 11/09/2006

Memory SPD

Graphics Card
Model integrated

Table A.6: Technical data of the system GOEDE-LX

A.7 System MAC-MINI

The information of the MAC-MINI is cut out from the system information of the operating

system OS-X.

Processor(s)
Number of processors 1

Number of cores 2 per processor

Name Intel Core Duo

Core Speed 1666 MHz

Chipset & Memory
Northbridge -

Southbridge -

Memory Type DDR2

Memory Size 512 MBytes

Memory Frequency 667.0 MHz

System
System Manufacturer Apple

System Name Macmini1,1

System S/N YM63735NW0A

Boot-ROM-Version MM11.0055.B08

SMC-Version 1.3f4

Memory SPD
Module 1 DDR2, (667 MHz), 256 MBytes

Module 2 DDR2, (667 MHz), 256 MBytes

Graphics Card
Model GMA950

Table A.7: Technical data of the system MAC-MINI

- 97 -

B Technical data of mass storages

B.1 SAM2.5SATA100GB

Manufacturer Model Number Interface Form Factor Capacity CQ RPM Spin Up Time

Samsung HM100JI SATA-I 2.5” 100 GB yes 5400 n. s.

Table B.1: Technical data of SAM2.5SATA100GB

- 98 -

Figure B.1: Output of h2benchw for SAM2.5SATA100GB

B.2 SEA3.5SATA500GB

Manufacturer Model Number Interface Form Factor Capacity CQ RPM Spin Up Time

Seagate ST3500630AS SATA-II 3.5” 500 GB yes 7200 n. s.

Table B.2: Technical data of SEA3.5SATA500GB

- 99 -

Figure B.2: Output of h2benchw for SEA3.5SATA500GB

B.3 TRACF4GB

Manufacturer Model Number Interface Form Factor Capacity RPM Spin Up Time

Transcend TS4GCF266 CF CF type I 4 GB - -

Table B.3: Technical data of TRACF4GB

- 100 -

Figure B.3: Output of h2benchw for TRACF4GB

B.4 TAKCF4GB

Manufacturer Model Number Interface Form Factor Capacity RPM Spin Up Time

TakeMS MS4096CFLAH010 CF CF type I 4 GB - -

Table B.4: Technical data of TAKCF4GB

- 101 -

Figure B.4: Output of h2benchw for TAKCF4GB

B.5 MAC-MINI HDD

Manufacturer Model Number Interface Form Factor Capacity RPM Spin Up Time

Fujitsu MHV2060BHPL SATA-I 2.5” 60 GB 5400 4 sec.

Table B.5: Technical data of MAC-MINI hard disk

- 102 -

C Adapter (SATA / IDE / CF)

C.1 SATA-CF-Adapter

The SATA-CF-Adapter is used for connecting a compact flash card to a SATA-Interface.

C.1.1 Troubleshooting with the SATA-CF-Adapter

Only two compact flash cards (TRACF4GB see chapter B.3 and TAKCF4GB see chapter

B.4) of a couple of cards do work with the SATA-CF-Adapter (see figure C.1) in

combination with the nVidia nForce4-SLI chip set, which is integrated in the systems

ATH64_1.8 and ATH64X2_2.0 (see chapter A.1 and A.2).

The following impacts can occur when the compact flash card does not work stable with

the chip set together:

The compact flash card is not detected, slows down the system or produces a system

crash with a blue screen by using the operating system Microsoft Windows.

- 103 -

Figure C.1: SATA-CF-Adapter (DeLOCK 91623)

The difference between the working and non-working cards is, that the working ones are

marked as fixed disk and the UDMA mode is supported.

With another system, based on a Pentium 4 and a chip set of Intel, all cards do work

without any negative influence.

A request to the distributor DeLOCK regarding the SATA-CF-Adapter results in the answer,

that there are no problems known. In the data sheet [CON06] of a SATA-CF-Adapter,

which is similar in design and is sold by Conrad Electronic SE, the hint is given, that the

adapter only works with Intel and specific Silicon Image chip sets.

C.2 IDE-SATA-Adapter

The IDE-SATA-Adapter is used for connecting a SATA device to an IDE-Interface.

C.3 SATA-SATA-Adapter

The IDE-SATA-Adapter is used for connecting a SATA device with a SATA data cable to a

SATA-Backplane. Therefore the SATA-Device, which is connected to the backplane can be

run on an external power supply. This adapter is created by cutting out from a

SATA-to-SATA bracket, because such a adapter could not be purchased.

- 104 -

Figure C.2: IDE-SATA-Adapter (Fibrionic Model

No: CK-0019C Ro)

Figure C.3: SATA-SATA-Adapter

D Modification of the Mac Mini
To check if the spin up of the hard disk is slown down by the (U)EFI firmware of the Mac

Mini, the case is opened as shown in the video [YOU07]. After this the hard disk is

removed and reconnected with a SATA-SATA-Adapter to be able to run the device on an

external power supply. The figure D.1 shows the configuration of the opened Mac Mini,

using an external power supply for the hard disk and the removed DVD drive. On figure D.

2 the configuration can be seen, with the cable-connected DVD drive and the hard disk

using an external power supply.

- 105 -

Figure D.1: Opened Mac Mini with the removed DVD drive and the external power supply for the hard

disk

- 106 -

Figure D.2: Opened Mac Mini with the cable-connected DVD drive and the external power supply for the

hard disk

E Charts of Bootchart

- 107 -

Figure E.1: Boot chart of boot process of Debian 3.1 on System ATH64X2_2.0 with

SEA3.5SATA500GB

- 108 -

Figure E.2: Boot chart of boot process of Debian 3.1 on System ATH64_1.8 with

SEA3.5SATA500GB

- 109 -

Figure E.3: Boot chart of boot process of Debian 4.0 on

System ATH64X2_2.0 with SEA3.5SATA500GB

- 110 -

Figure E.4: Boot chart of boot process of Ubuntu 7.10 beta on

System ATH64X2_2.0 with SEA3.5SATA500GB

- 111 -

Figure E.5: Boot chart of boot process of openSUSE 10.3 RC1 on System

ATH64X2_2.0 with SEA3.5SATA500GB (Part 1)

- 112 -

Figure E.6: Boot chart of boot process of openSUSE 10.3 RC1 on System

ATH64X2_2.0 with SEA3.5SATA500GB (Part 2)

- 113 -

Figure E.7: Boot chart of boot process of Ubuntu 7.10 beta with

SEA3.5SATA500GB without use of readahead-list

- 114 -

Figure E.8: Boot chart of boot process of Ubuntu 7.10 beta with

SEA3.5SATA500GB with use of readahead-list

- 115 -

Figure E.9: Boot chart of boot process of Ubuntu 7.10

beta with TRACF4GB without use of readahead-list

- 116 -

Figure E.10: Boot chart of boot process of Ubuntu 7.10 beta

with TRACF4GB after reprofiling readahead-list

- 117 -

Figure E.11: Boot chart of boot process of the tweaked Ubuntu 7.10

beta with TRACF4GB

- 118 -

Figure E.12: Boot chart of boot process of Ubuntu 7.10 beta on System EPIA-ML with

SEA3.5SATA500GB

- 119 -

Figure E.13: Boot chart of boot process of Ubuntu 7.10 beta on System EPIA-ML with TRACF4GB

F Additional tables

F.1 Features list of Suspend-To-Disk and Linux

Name swsusp TuxOnIce uswsusp

Available in kernel 2.6.x patch against 2.6.x since 2.6.17

Kernel config option CONFIG_HIBERNATION CONFIG_TUXONICE CONFIG_HIBERNATION

Principle author Rafael Wysocki Nigel Cunningham Rafael Wysocki

PM subsystem required none none none

Telling kernel at boot

where to save image

resume=/dev/hda# resume=<file:|

swap:>/dev/

[node]<:sector>

If file & swap allocators

are both compiled in,

swap is the default.

How to activate

suspend

echo -n disk

> /sys/power/state

echo

> /sys/power/tuxonice/do

_suspend or echo disk

> /sys/power/state if

replacing swsusp is

enabled.

Userspace program

Telling kernel not to try

and resume in case of a

problem

noresume noresume ?

Architecture support i386, ppc, x86_64, ia64 i386, ppc, x86_64, ia64 i386, ppc, x86_64, ia64

Max. Image size 1/2 memory See below 1/2 memory

Highmem support Yes (up to 4GB) Yes (up to 4GB) Yes (up to 4GB)

Discontinuous memory

support

Yes Yes Yes

SMP support Yes Yes Yes

Preemption support Yes Yes Yes

Compression No via cryptoapi - LZF

recommended

Yes, with libraries

Encryption No by writing to dm-crypt

partition

With libraries

Suspend-to-swapfile

support

No Yes Yes?

Suspend-to-multiple

swap partitions/files

No Yes No

Suspend-to-file support No Yes No

Modular support No Yes (post 2.2.9) No

- 120 -

Initrd support (needed

for LVM/dm-crypt)

Yes Yes Required

UML support No No No

Wake alarm support No Yes No

Cluster support No In progress No

Suspend-over-NFS

support

No No (also planned ;) No

Auto swapon when

starting to hibernate

No Yes No

Easy location of

resume= values

No Yes No

Reconfigure without

rebooting

No Yes No

Full mem. accounting,

leak detection, failure

path testing.

No Yes No

Expected compression

ratio to avoid freeing

too much mem.

No Yes No

Scripting support. No Yes No

Keep image mode (For

kiosks).

No Yes No

Mark resume attempted

(sane default if

resuming fails).

No Yes No

Multithreaded I/O No Yes No

Readahead. No Yes No

Cluster support. No In progress No

Interactive debugging No Yes No

Cancel hibernating via

keyboard

No Yes Yes

Cancel resuming via

keyboard

No Yes No

Switch poweroff

method while

hibernating

No Yes No

Checksummed image No Yes No

Unloadable modules

when not in use

No Yes No

Fuse support No Preliminary No

Table F.1: Features list of Suspend-To-Disk and Linux, source [TOIb]

- 121 -

F.2 Description of the tables TuxOnIce boot

Record Description

Used memory [MiB] the memory, which is totally used (get with free)

Free memory [MiB] the memory, which is not used (get with free)

Buffers [MiB] the memory, which is used as buffer (get with free)

Cached [MiB] the memory, which is used as cache (get with free)

Image size uncompressed [MiB] the size of the hibernation image in uncompressed state (get with

debug_info)

Image size compressed [MiB] the size of the compressed hibernation image (get with debug_info)

Compression in percent rate of the compression (get with debug_info)

Write speed [MiB/s] the uncompressed volume of the throughput to the disk by writing

the image (get with debug_info)

Read speed [MiB/s] the uncompressed volume of the throughput from the disk by

reading the image (get with debug_info)

Time for read image [s] calculated time for read the image

Time until TuxOnIce starts [s] the uptime of the Linux kernel, which is elapsed to the starting point

of TuxOnIce

Time [s] the time, which is get with a stop watch

Table F.2: Description of the tables TuxOnIce boot

- 122 -

G Source code

G.1 Fbtt

The source code and binaries of Fbtt can be downloaded from [FBT08].

G.1.1 fbtt.cpp

/* The source code of Fbtt is standing under the */
/* GNU GENERAL PUBLIC LICENSE Version 2 */
/* for more information about the GPLv2 see */
/* http://www.gnu.org/licenses/info/GPLv2.html */

/* principal author: Florian Strunk */

#include<iostream>
#include<fstream> // for files
#include<string> // for string

#include <ctime> //for time_t

#include <sstream> // for stringstream
#include <list>
#include <boost/algorithm/string.hpp> // split for string

#include <stdint.h> // for uint64_t ???

using namespace std;

const std::string version = "0.12";

std::string getUpTime()
 {
 ifstream file("/proc/uptime");
 std::string buffer;
 getline(file,buffer);
 file.close();
 return buffer;
 }

uint64_t getTSC()
/* reads and prints timestamp counter on i386/amd64/itanium */
/* source code of getTSC written by Parthey */
/* modified by Florian Strunk */

{
 uint64_t tsc;

#ifdef __i386__
 __asm__(
 "cpuid \n" /* no out-of-order execution */
 "rdtsc \n"
 :
 "=A" (tsc)
 :
 : "ebx", "ecx" /* cpuid scratcht eax, ebx, ecx, edx */

- 123 -

http://www.gnu.org/licenses/info/GPLv2.html

);
#endif

#ifdef __x86_64__
 __asm__(
 "cpuid \n" /* no out-of-order execution */
 "rdtsc \n"
 "shl $32,%%rdx \n" /* x86_64 uses %rax instead of %dx/%ax
*/
 "or %%rdx,%%rax \n" /* to store 64 bit function return values
*/
 :
 "=a" (tsc)
 :
 : "ebx", "ecx", "edx", "cc" /* cpuid scratcht eax, ebx, ecx,
edx */
 /* shl+or change the flag register
*/
);
#endif

#ifdef __ia64__
 __asm__ (
 "srlz.i; \n" /* no out-of-order execution */
 "mov %0=ar.itc; \n"
 :
 "=r" (tsc)
);
#endif
 //printf("%llu", (unsigned long long int) tsc);
 return tsc;
}

std::string IntToStrWithZero(int number,int zeros)
{
 stringstream ss;
 // Anzahl Ziffern herausfinden
 int count = 1;
 int tempnumber = number;

 while (tempnumber > 9)
 {
 tempnumber /= 10;
 count++;
 }

 for (int i = count; i<zeros; i++)
 {
 ss << 0 ;
 }
 ss << number;

 return ss.str();
}

void getDateTime(std::string &str_date, std::string &str_time)
{
 time_t now = time(0);

 tm* localtm = localtime(&now);

 std::stringstream sstr_time;

- 124 -

 std::stringstream sstr_date;

 sstr_time << IntToStrWithZero(localtm->tm_hour,2) << ":" <<
IntToStrWithZero(localtm->tm_min,2) << ":" << IntToStrWithZero(localtm->
tm_sec,2);
 //cout << sstr_time.str() << endl;

 sstr_date << localtm->tm_year+1900 << "-" << IntToStrWithZero(localtm->
tm_mon + 1,2) << "-" << IntToStrWithZero(localtm->tm_mday,2);
 //cout << sstr_date.str() << endl;

 str_date=sstr_date.str();
 str_time=sstr_time.str();
}

void extractUpIdleTime(string upidletime, string &uptime, string
&idletime)
{
 list<string> results;
 boost::split(results,upidletime,boost::is_any_of(" "));
 uptime = results.front();
 results.pop_front();
 idletime = results.front();
}

void WriteLogFile(string date, string time, string uptime, string
idletime, uint64_t tsc)
{
 // if directory /var/log/fbtt not exist then make it

 string path = "/var/log/fbtt/";
 string sysmkdir = "mkdir -p ";
 system((sysmkdir+path).c_str());

 // generate filename with date and time
 string filenamedate = date;
 string filenametime = time;

 string::size_type pos = 0;
 while ((pos = filenametime.find(':',pos)) && (pos!=std::string::npos))
 {
 // String ":" change with ""
 filenametime.replace(pos,1,"");
 }
 //cout << filenametime << endl;

 ofstream logfile((path+filenamedate+"_"+filenametime+".log").c_str());
 if (!logfile)
 {
 cerr << "File " << (path+filenamedate+"_"+filenametime
+".log").c_str() << " could not be generated" << endl;
 }
 else
 {
 // Content of the file
 // fbtt version: 0.12
 // date: yyyy-mm-dd
 // time: hh:mm:ss
 // boottime: s.ss
 // idletime: s.ss
 // tsc: uint64_t
 logfile << "fbtt version: " << version << endl;
 logfile << "date: " << date << endl;

- 125 -

 logfile << "time: " << time << endl;
 logfile << "boottime: " << uptime << endl;
 logfile << "idletime: " << idletime << endl;
 logfile << "tsc: " << tsc << endl;
 }
 logfile.close();
}

int main()

{
 string date,time,upidletime, uptime, idletime;
 uint64_t tsc;
 upidletime = getUpTime();
 tsc = getTSC();
 getDateTime(date,time);
 extractUpIdleTime(upidletime,uptime, idletime);
 WriteLogFile(date,time,uptime, idletime,tsc);
 cout << "fbtt version: " << version << endl;
 cout << "date: " << date << endl;
 cout << "time: " << time << endl;
 cout << "boottime: " << uptime << endl;
 cout << "idletime: " << idletime << endl;
 cout << "tsc: " << tsc << endl;
}

G.1.2 makefile

BINARY=fbtt
CPPFLAGS=-Wall -O3
all: $(BINARY)
install:

cp $(BINARY) /
uninstall:

rm /$(BINARY)
clean:

rm -f $(BINARY) *.o *~

- 126 -

Glossary

BIOS Basic Input Output System

CD Compact Disk

CF Compact Flash

CGA Color Graphics Adapter

COM Communication Equipment

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DVD Digital Versatile Disc

EFI Extensible Firmware Interface

EISA Extended Industry Standard Architecture

ELC Embedded Linux Conference

EPS Encapsulated Postscript

ext3 third extended filesystem

Fbtt Florian's Boot Time Tool

FeRAM Ferroelectric Random Access Memory

GDM GNOME Display Manager

GiB Gibibyte (230 Byte)

GNOME GNU Network Object Model Environment

GNU GNU's Not Unix

GRUB GRand Unified Bootloader

HAL Hardware Abstraction Layer

HDD Hard Disk Drive

I/O Input/Output

IA32 Intel Architecture 32-Bit

IDE Integrated Drive Electronic

KDE K Desktop Environment

KDM KDE Display Manager

KiB Kibibyte (210 Byte)

LAN Local Area Network

Mac Macintosh

MiB Mebibyte (220 Byte)

MRAM Magneto resistive Random Access Memory

- 127 -

NFS Network File System

NMI Not Maskable Interrupt

NRAM Nano Random Access Memory

OLS Ottava Linux Symposium

OS Operating System

PIT Programmable Interval Timer

PNG Portable Network Graphics

POST Power On Self Test

PRAM Phase-change Random Access Memory

PVR Personal Video Recorders

PXE Preboot eXecution Environment

RAID redundant array of independent disks

RAM Random Access Memory

ROM Read Only Memory

RRAM Resistive Random Access Memory

SATA Serial Advanced Technology Attachment

SONOS Semiconductor-Oxide-Nitride-Oxide-Semiconductor

SPD Serial Presence Detect

SPI Software in the Public Interest

SPRAM Spin transfer torque Random Access Memory

SSD Solid State Disk

SVG Scalable Vector Graphics

TSC Time Stamp Counter

UDMA Ultra-Direct Memory Access

UEFI Unified Extensible Firmware Interface

UMPC Ultra Mobile Personal Computer

USB Universal Serial Bus

XDM X Display Manager

ZMD Zen Management Daemon

- 128 -

References

APPA: AppArmor; http://de.opensuse.org/Apparmor [02-Mar-2008]

AXB06: Axboe, Jens; fcache: a remapping boot cache; 2006;

http://lkml.org/lkml/2006/5/15/46 [02-Mar-2008]

BOOa: Bootchart; http://bootchart.org/ [02-Mar-2008]

BOOb: Bootchart - Download; http://bootchart.org/download.html [02-Mar-2008]

BUG: HAL fails to initialise when /etc/init.d/rc sets CONCURRENCY=shell; 2007;

https://bugs.launchpad.net/ubuntu/+source/hal/+bug/149881 [02-Mar-2008]

BUGa: xf86-video-amd: fails to autoconfigure; 2007; https://bugs.launchpad.net/ubuntu/

+source/xserver-xorg-video-amd/+bug/140051 [09-Mar-2008]

BUGb: xserver-xorg.video-amd crashes on Geode LX/Linutop on Xorg start; 2007;

http://lists.freedesktop.org/archives/xorg/2007-October/029336.html [09-

Mar-2008]

CON06: Conrad Electronic SE; SATA - COMPACTFLASH KONVERTER Best.-Nr.

974571; 2006;

http://www.produktinfo.conrad.com/datenblaetter/950000-974999/974571-in-01-

de-HINWEIS_SATA-COMPACTFLASH_KONVERTER.pdf [02-Mar-2008]

COR: Payloads - coreboot; http://www.coreboot.org/Payloads [02-Mar-2008]

CPUZ: CPU-Z; http://www.cpuid.com/cpuz.php [09-Mar-2008]

DEBI: Debian -- Spenden an Software in the Public Interest; 2008;

http://www.debian.org/donations [02-Mar-2008]

DIST07: Top Ten Distributionen; 2007; http://distrowatch.com/dwres.php?resource=major

[02-Mar-2008]

FBT08: Strunk, Florian; Fbtt - Florian's Boot Time Tool; 2008; http://hardtest.florian-

strunk.de/showthread.php?tid=53 [09-Mar-2008]

GIA07: Giannaros, Francis; Sneak Peeks at openSUSE 10.3: Greatly Improved Boot

Time; 2007; http://news.opensuse.org/2007/08/12/ [02-Mar-2008]

GIT: GIT source for Ubuntu 71.0 kernel with TuxOnIce; cit clone

git://kernel.ubuntu.com/nigelc/ubuntu-gutsy+tuxonice.git ubuntu-gutsy

+tuxonice.git [27-Feb-2008]

HEI: c't-Systeminfo; http://www.heise.de/ct/ftp/ctsi.shtml [09-Mar-2008]

- 129 -

HEN08: VIA's New Centaur Designed Isaiah CPU Architecture; 2008;

http://enthusiast.hardocp.com/article.html?

art=MTQ1MCwxLCxoZW50aHVzaWFzdA== [02-Mar-2008]

JDO06: jdong; Improve bootup speed by reprofiling bootup; 2006;

http://ubuntuforums.org/showthread.php?t=254263 [02-Mar-2008]

KOF07a: Kofler, Michael; Linux; 8th; Addison-Wesley; 2007; page 750

KOF07b: Kofler, Michael; Linux; 8th; Addison-Wesley; 2007; page 756

LMA05: Linux Magazin; Boot-Beschleuniger im Vergleich; Linux New Meda AG;

11/2005; page 64-69

LMA07a: Linux Magazin; Linux führt bei Embedded-Systemen; Linux New Meda AG;

12/2007; page 750

LMA07b: Linux Magazin; Schnelles Booten mit Upstart, einem Ersatz für das betagte

Sys-V-Init; Linux New Meda AG; 02/2007; page 72-77

LMA08: Linux Magazin; Leichtgewichtige Desktopumgebungen im Test; Linux New

Meda AG; 03/2008; page 60-63

MCT08: Magazin für Computertechnik (c't); Intels Silverthorne für Embedded Systems;

Heise Zeitschriften Verlag GmbH & Co. KG; 06/2008; page 26

MIN04: Minnich, G. Ronald; LinuxBIOS at Four; 2004;

http://www.linuxjournal.com/article/7170 [02-Mar-2008]

MOO65: Moore, Gordon; Moore's Law; 1965;

http://www.intel.com/technology/mooreslaw/ [02-Mar-2008]

NEC07: NEC Develops World's Fastest SRAM-Compatible MRAM; 2007;

http://www.nec.co.jp/press/en/0711/3001.html [02-Mar-2008]

NFS: Linux NFS FAQ; http://nfs.sourceforge.net/ [02-Mar-2008]

OPD07: Opdenacker, Michael; Readahead - Time Travel Techniques; 2007;

http://tree.celinuxforum.org/CelfPubWiki/OttawaLinuxSymposium2007 [09-

Mar-2008]

PAR06: Parthey, Daniel; Booting Linux Really Fast; 2006;

PAR06a: Parthey, Daniel; Booting Linux Really Fast;2006; page 29

PAR06b: Parthey, Daniel; Booting Linux Really Fast;2006; page 7-10

PAR06c: Parthey, Daniel; Booting Linux Really Fast;2006; page 27

PAR07: Parthey, Daniel, Analyzing real-time behavior of flash memories, 2007

- 130 -

SCH07: Schulz, Hans-Peter; Linux Kompendium - POST Ablauf Vers. 4.53; 2007;

http://www.bios-info.de/4p92x846/awpost53.htm [02-Mar-2008]

SCL06: Schenk, Lars; PXE Netzwerk-Boot mit Ubuntu Client & Debian Server; 2006;

http://lars-schenk.com/pxe-netzwerk-boot-mit-ubuntu-client-und-debian-

server/60 [09-Mar-2008]

SUS07a: Boottime; 2007; http://en.opensuse.org/Boottime#fcache [02-Mar-2008]

SUS07b: Ubuntu and Upstart; 2007; http://en.opensuse.org/Ubuntu_and_Upstart [02-

Mar-2008]

TEC08: Intel Silverthorne: 2-GHz-Mobile-CPU mit neuer Architektur; 2008;

http://www.tecchannel.de/pc_mobile/news/1745992/ [02-Mar-2008]

THE07: TheeMahn2003; Tweaking Ubuntu Ultimate; ;

ubuntusoftware.info/Howto_tweak_ubuntu_ultimate.html [09-Mar-2008]

TOIa: TuxOnIce - Download; http://www.tuxonice.net/downloads/ [09-Mar-2008]

TOIb: Software Suspend - Features; http://www.tuxonice.net/features [09-Mar-2008]

TOIc: Cunningham, Nigel; Read Image with tiny kernel to reduce boot time;

http://lists.tuxonice.net/lurker/message/20080106.235327.9b150378.en.html

[09-Mar-2008]

TOId: Software Suspend HOWTO - Keep Image Mode;

http://www.tuxonice.net/HOWTO.html#toc7.5 [09-Mar-2008]

TOP07: TOP500 Supercomputing Sites; 2007; http://www.top500.org [02-Mar-2008]

UBD07: Diskless Ubuntu Howto; 2007;

https://help.ubuntu.com/community/DisklessUbuntuHowto [09-Mar-2008]

UBM07: Ubuntu Mobile; 2007; http://www.ubuntu.com/products/mobile [09-Mar-2008]

UEFI1.1: TCG EFI Platform Specification Version 1.20 Final Revision 1.0; 2006;

https://www.trustedcomputinggroup.org/specs/PCClient/TCG_EFI_Platform_1_

20_Final.pdf [02-Mar-2008]

UEFI2.1: UEFI Specification Version 2.1; http://www.uefi.org/specs/ [02-Mar-2008]

UPS07: upstart - event-based init daemon; 2007; http://upstart.ubuntu.com/ [02-

Mar-2008]

WIKIa: Wikipedia; Keyword: Debian; http://de.wikipedia.org/debian [02-Mar-2008]

WIKIb: Wikipedia; Keyword: Ubuntu; http://de.wikipedia.org/wiki/Ubuntu [02-Mar-2008]

WIKIc: Wikipedia; Keyword: OpenSUSE; http://de.wikipedia.org/wiki/OpenSUSE [02-

Mar-2008]

- 131 -

WIKId: Wikipeda; Keyword: Booten; http://de.wikipedia.org/wiki/Booten [02-Mar-2008]

WOO07: Wool, Vitaly; Parallelizing Linux boot on CE Devices; 2007;

http://tree.celinuxforum.org/CelfPubWiki/ELCEurope2007Presentations [02-

Mar-2008]

YAST: Yast - OpenSuSE; http://de.opensuse.org/YaST [02-Mar-2008]

YOU07: How to open a mac mini; 2007; http://www.youtube.com/watch?

v=Q5DdtVHjI5M&feature=related [09-Mar-2008]

- 132 -

Declaration of Authorship

I hereby declare that the whole of this diploma thesis is my own work, except where

explicitly stated otherwise in the text or in the references. This work is submitted to

Chemnitz University of Technology as a requirement for being awarded a diploma in

Applied Computer Science (“Angewandte Informatik”). I declare that it has not been

submitted in whole, or in part, for any other degree.

Chemnitz, March 10, 2008

Florian Strunk

	1 Introduction
	2 State of the art
	2.1 Overview of the boot process
	2.2 Description of the boot process
	2.2.1 Power on, CPU reset
	2.2.2 Execution of firmware
	2.2.2.1 PC-BIOS
	2.2.2.2 LinuxBios
	2.2.2.3 (U)EFI

	2.2.3 Load boot loader
	2.2.4 Load operation system
	2.2.4.1 Kernel
	2.2.4.2 Init

	2.3 Previous publications on “Boot Process and Linux”

	3 Measuring methods
	3.1 Introduction of the measuring methods
	3.1.1 Stop watch
	3.1.1.1 Short Description of using a stop watch
	3.1.1.2 Measuring points

	3.1.2 Bootchart
	3.1.2.1 Short Description of Bootchart
	3.1.2.2 Measuring points
	3.1.2.3 How to install Bootchart
	3.1.2.4 Sample of a Bootchart chart

	3.1.3 Fbtt (Florian's Boot Time Tool)
	3.1.3.1 Short description of Fbtt
	3.1.3.2 Measuring points
	3.1.3.3 How to install Fbtt
	3.1.3.4 Sample of a Fbtt output file

	3.2 Comparison of measuring methods
	3.2.1 Description
	3.2.2 Results
	3.2.3 Discussion

	4 Myth of continuously rising boot times
	4.1 Introduction of the different distributions
	4.1.1 Debian
	4.1.2 Ubuntu
	4.1.3 OpenSUSE / SuSE Linux

	4.2 Configuration of the distribution
	4.3 Used measuring methods
	4.4 Results
	4.5 Discussion

	5 Research of the latest versions
	5.1 Evaluation of boot times with using traditional mass storage
	5.1.1 Configuration
	5.1.2 Measuring methods
	5.1.3 Results
	5.1.4 Discussion

	5.2 Analysis of the boot process with Bootchart
	5.2.1 Configuration
	5.2.2 Used measuring methods
	5.2.3 Results
	5.2.3.1 Bootchart of Debian 3.1
	5.2.3.2 Bootchart of Debian 4
	5.2.3.3 Bootchart of Ubuntu 7.10
	5.2.3.4 Bootchart of OpenSuse 10.3

	5.2.4 Discussion

	6 Influence of several mass storages to the boot behavior
	6.1 Local mass storage
	6.1.1 Configuration for the hard disks and flashes
	6.1.2 Measuring methods
	6.1.3 Results
	6.1.4 Discussion

	6.2 Network mass storage
	6.2.1 Configuration for the net boot
	6.2.1.1 Introduction to configure the client
	6.2.1.2 Introduction to configure the server
	Variants
	Using the hard disk of the server
	Using the hard disk and the system buffer of the server
	Using the RAM disk
	Using the RAM disk and the system buffer of the server

	6.2.2 Measurement methods
	6.2.3 Results
	6.2.4 Discussion

	6.3 Spread of the measurement values
	6.3.1 Description
	6.3.2 Results
	6.3.3 Discussion

	7 Tweaking Ubuntu 7.10 to reduce boot time
	7.1 Description
	7.2 Configuration
	7.2.1 Point of start
	7.2.2 Removing services
	7.2.2.1 Services applet
	7.2.2.2 Boot-up-Manager (B.U.M.)
	7.2.2.3 Sysv-rc-conf
	7.2.2.4 Reprofile readahead-list

	7.2.3 Acceleration the file system
	7.2.4 Parallel execution

	7.3 Results
	7.4 Discussion

	8 Alternative to the boot process
	8.1 Boot process abstract
	8.2 Suspend-to-Disk versus Power on and restore state
	8.3 Suspend-to-Disk and Linux
	8.3.1 TuxOnIce
	8.3.1.1 Installation of TuxOnIce
	Patch and compile
	Adjust the TuxOnIce patch
	Using a swap partition for the hibernation image
	Using a file for the hibernation image

	8.3.1.2 Configuration and Measurement methods
	8.3.1.3 Results
	8.3.1.4 Discussion

	9 Evaluation of embedded systems (IA32)
	9.1 Traditional boot process
	9.1.1 Configuration
	9.1.2 Measurement methods
	9.1.3 Results
	9.1.4 Discussion

	9.2 Boot up by loading image
	9.2.1 Configuration
	9.2.2 Measurement methods
	9.2.3 Results
	9.2.4 Discussion

	10 Comparison between several firmwares
	10.1 PC-BIOS
	10.1.1 Configuration and measurement method
	10.1.2 Results

	10.2 LinuxBios
	10.2.1 Configuration and measurement method
	10.2.2 Results

	10.3 EFI
	10.3.1 Configuration and measurement method
	10.3.2 Results

	10.4 Discussion

	11 Conclusion
	12 Outlook
	A Test systems
	A.1 System ATH64_1.8
	A.2 System ATH64X2_2.0
	A.3 System EPIA-ML
	A.4 System CORE2DUO_2.16
	A.5 System P4_3.2
	A.6 System GEODE-LX
	A.7 System MAC-MINI

	B Technical data of mass storages
	B.1 SAM2.5SATA100GB
	B.2 SEA3.5SATA500GB
	B.3 TRACF4GB
	B.4 TAKCF4GB
	B.5 MAC-MINI HDD

	C Adapter (SATA / IDE / CF)
	C.1 SATA-CF-Adapter
	C.1.1 Troubleshooting with the SATA-CF-Adapter

	C.2 IDE-SATA-Adapter
	C.3 SATA-SATA-Adapter

	D Modification of the Mac Mini
	E Charts of Bootchart
	F Additional tables
	F.1 Features list of Suspend-To-Disk and Linux
	F.2 Description of the tables TuxOnIce boot

	G Source code
	G.1 Fbtt
	G.1.1 fbtt.cpp
	G.1.2 makefile

	Glossary

